Search Results

Keyword: ‘energylite’

ST intros STM32L EnergyLite ultra-low-power MCUs for portable and very low power apps

May 3, 2010 Comments off

STMicroelectronics' STM32L EnergyLite ultra-low-power MCUs.

STMicroelectronics' STM32L EnergyLite ultra-low-power MCUs.

STMicroelectronics recently launched the STM32L EnergyLite ultra-low-power MCUs. I caught up with Vinay Thapiyal, technical marketing manager, MCU’s, ST India, to learn more.

The highlights of this series of MCUs include a commitment for ultra-low power — the EnergyLite platform is common for 8-bit (STM8L) and 32-bit (STM32L) MCUs. Also, it is strong on pure energy efficiency, with high performance combined with ultra low power, i.e., high high energy saving.  Finally, the ultra low power member in STM32 portfolio enriches both the STM32 ultra-low-power EnergyLite platform and the STM32 portfolio.

According to Thapliyal, STMicroelectronics has been involved in the MCU market for a long time. Off late, it has started focusing on the STM32 — the ARM Cortex based MCU and the STM8 — for 8-bit family. “We have started converging our old families into these two domains,” he added.

The STM32F is the foundation of the STM32 family. STM32F is a family of low power MCUs based on the 32-bit ARM Cortex M3 architecture.

The STM8 is a family of MCUs based on ST’s propritetary atchitecture. The STM32L is STMicroelectronics’ ultra low power family mainly used for portable and very low power applications.

The ultra-low-power EnergyLite platform, featuring the STM32L and the STM8L is based on STMicroelectronics’ 130 nm ultra-low-leakage process technology. They share common technology, architecture and peripherals. The STM8, which was launched in 2009, has caught on very fast. It is a high performance, low cost MCU.

He added that STMicroelectronics started with 130nm technology, and low pin count and low flash on STM8, while higher memory and high pin count is available on the STM32. Read more…

ST intros STM32L ultra-low-power Cortex‑M3 devices

March 3, 2011 Comments off

STM32L ultra-low-power Cortex‑M3 devices.

STM32L ultra-low-power Cortex‑M3 devices.

STMicroelectronics has introduced the STM32L advanced ultra-low-power Cortex-M3 based MCU platform.

Built on cutting-edge proprietary process – robustness, it is part of a wide 32-bit product portfolio. The MCU platform is based on the just-enough energy concept and has an all inclusive package applications.

STM32L 32- to 128-Kbyte products are entering full production in the second half of March 2011. It is part of the industry’s largest ARM Cortex-M 32-bit microcontroller family with six STM32 families. STMicroelectronics is developing the STM32L portfolio up to 384 Kbytes of embedded memory. The STM32L is also Continua ready for its USB peripheral driver.

STM32L’s robustness has been derived from an automotive qualified process. It is all inclusive for ultra-low-power applications, and comes with hardware integrated features and software library packages. STM32L also has a ‘just-enough energy concept’, which includes undervolting, user controlled and an innovative architecture, all of this for less than 1 µA.

ST’s ultra-low-power EnergyLite platform features ST’s 130nm ultra-low-leakage process technology. It makes use of shared technology, architecture and peripherals. The company’s ultra-low-power portfolio for 2011 will be in production second half of March 2011. Many others will also be in production in the second half of April 2011. In fact, there will be over 100 part numbers from 4- to 384-Kbyte flash, and from 20 to 144 pins.

STM32L is based on ultra-low-power architecture, which is all inclusive for ultra low power applications. It also features ultra-low voltage, with power supply down to 1.8 V with BOR and also down to 1.65 V without BOR.The analog functional can be down to 1.8 V and the reprogramming capability can be down to 1.65 V.

STM32L is also flexible and secure, featuring +/- 0.5 percent internal clock accuracy when trimmed by RTC oscillator. It has up to five clock sources and has the MSI to achieve very low power consumption at seven low frequencies.

It also feattures dynamic voltage scaling in Run mode. The voltage scaling optimizes the product efficiency. User selects a mode (voltage scaling) according to external VDD supply, DMIPS performance required and maximum power consumption. It features the energy saving mode as well, down to 171 µA/DMIPS from Flash in Run mode. Read more…

%d bloggers like this: