Search Results

Keyword: ‘family’

Intel launches Xeon processor E5-2600 product family

March 7, 2012 Comments off

Intel Xeon processor E5-2600 product family.

Intel Xeon processor E5-2600 product family.

Following its global launch yesterday, Intel Corp. today announced the record-breaking Intel Xeon processor E5-2600 product family in Bangalore, India. R. Ravichandran, director, Sales & World Ahead Program – Asia, Intel Technology India Pvt Ltd, said that the Xeon processor:
* Allows 80 percent performance gain.
* Uses breakthrough I/O innovation.
* Makes use of Trusted Security.
* Provides best data center performance per watt.

Intel has integrated the I/O, which reduces latency by 30 percent. The Xeon E5-2600 processor also has PCI Express 3.o as well as the Intel Data Direct I/O. Overall, the I/O bandwidth is said to improve 3X over the previous generation.

The new chip’s energy efficiency has also increased by 50 percent.  As for Trusted Security, there is the Intel TXT and the Intel AES-NI. The Xeon processor is meant for server, storage and network.

Categories: Semiconductors

Xilinx starts shipping Zynq-7000 EPP family!

December 14, 2011 Comments off

(L-R): Xilinx's Dave Tokic and Lawrence Getman.

(L-R): Dave Tokic and Lawrence Getman.

Xilinx Inc. has announced its first Zynq-7000 Extensible Processing Platform (EPP) shipments to customers. It showcased the first public demonstration of a Zynq-7000 EPP at the ARM European Technical Conference, in Paris, France. where attendees saw the device running a Linux-based application. Xilinx has recently started shipping Zynq, to at least three customers.

The Zynq-7000 family is the world’s first EPP. It combines an industry-standard ARM dual-core Cortex-A9 MPCore processing system with Xilinx 28nm unified programmable logic architecture. This processor-centric architecture delivers a complete embedded processing platform that offers developers ASIC levels of performance and power consumption, the flexibility of an FPGA and the ease of programmability of a microprocessor.

Dave Tokic, senior director, partner Ecosystems and Alliances, said the company had made a number of investments. It has adopted a two-pronged approach: focusing on how it developed the ecosystem, and what it could do by itself. “We need a tool flow applicable across all customers. Our technologies are enabling much more complex designs. We are also raising the bar for the EDA providers. We do provide early access to our tools, etc.”

Tokic added that the company has also invested a lot in training and certification in India. “Our partners are some very good companies. We have 24 members in our program. Eight of those are certified members.” Some of the partner companies include Wipro, TCS, Corel, Mistral, CMC, GDA Technologies (L&T), Mechatronics, etc.

Lawrence Getman, VP of Processing Platforms, added that Xilinx has been seeing how to potentially leverage a cloud. “We are continuing to develop the IP ecosystem. We are also looking to engage expert service needs.”

Commenting on developments, Getman said that Xilinx’s Virtex-7 series FPGAs are based on the high performance low power (HPL) process by TSMC. Xilinx wants to foster more collaborative approach in future for acquiring and working with customers.

Categories: FPGA, FPGA market, FPGAs, Xilinx

SanDisk’s iNAND Extreme family of embedded eMMC storage devices for high-end mobile and tablets

July 3, 2011 Comments off

SanDisk Corp.’s embedded storage is in most of all top computing device brands. It recently launched the iNAND Extreme family of embedded eMMC storage devices for high-end mobile and tablets.

Gadi Ben-Gad, product marketing manager, SanDisk.

Gadi Ben-Gad, product marketing manager, SanDisk.

Gadi Ben-Gad, product marketing manager for SanDisk, said: “This very high performance line of iNAND products joins the existing iNAND and iNAND Ultra lines, which are very successful in the mobile, tablet and consumer electronics markets. The first generation of these products (iNAND Extreme) will be sampling in a few weeks.

“iNAND Extreme products offer up to 50MB/s write and 80MB/s read sequential performance and very high random performance designed for the next generation of high-end mobile and tablet devices. SanDisk continues to monitor market trends and requirements and diversifying the embedded offering in the market, to answer to the different requirements of the different mobile, tablet and consumer electronics segments.”

So, how will SanDisk play a strong role in these areas? According to Ben-Gad, SanDisk works closely with a broad and diverse set of mobile and tablet OEMs. The company also works very closely with the majority of the leading mobile chipset vendors and standardization bodies in the mobile/tablet ecosystem to ensure optimal integration and technological support.

He added: “SanDisk is a fully vertically integrated company with substantial expertise in NAND flash technology, system technology and product design with years of experience in designing embedded and removable mobile storage devices. SanDisk is very well-positioned to understand, develop and support the future storage requirements in mobile, tablet and consumer electronics devices.”

Finally, I must thank Ms. Jody Privette Young, LymanPR, for making this happen.

Xilinx intros Zynq-7000 family of extensible processing platform (EPP)


Xilinx's Zync-7000 series.

Xilinx's Zync-7000 series.

Xilinx Inc. has unveiled the Zynq-7000 family, the industry’s first Extensible Processing Platform (EPP). It is supported by an extensive ecosystem of tools and IP providers.

According to Tim Erjavec, senior director, platform soluutions and service marketing, the Zynq-7000 family tightly integrates a complete ARM Cortex-A9 MPCore processor-based system with 28nm, low-power programmable logic for system architects and embedded software developers to extend, customize, optimize, and differentiate their systems.

Back in April 2010, Xilinx had announced a new class of devices featuring an extensible processing platform and a processor-centric solution. Now, in March 2011, the first Xilinx EPP family and brand has been announced.

Embedded designers are said to be asking for more. There will be a combined market of $12,74 billion by 2014, featuring automotive driver assistance, intelligent video surveillance, industrial control, telemetry and guidance, enterprise femtocell, broadcast cameras, multifunction printers, aerospace avionics, etc.

Zynq-7000 device portfolio includes the 7010, 7020, 7030 and 7040. These have faniliar design environments, familiar software programming model, familiar hardware design flow, besides flexible accelerators and IP such as common AXI-4 interface and a broad ecosystem featuring tools, OSs and IPs.

Zynq-7000 family highlights include a complete ARM processing system, featuring a dual ARM Cortex-A9 and ontegrated memory controllers and peripherals. A tightly integrated programmable logic extends the processing system, scalable density and performance and features over 3000 internal interconnects. There is also a flexible array of I/O, featuring a wide range of external multi standard I/O, high performance integrated serial tranceivers, and ADC inputs.

Built with state-of-the-art 7 series programmable logic featuring 430K to 3.5 million equivalent ASIC gates and 30K-235K logic cells. It also enables massive parallel processing with up to 760 DSP engines delivering over 910 GMACs.

The flexible internal I/O includes 54 processor I/Os, 350 multi-standard and high performance I/Os, flexible memory interfaces and high performance untegrated serial tranceivers.

A wide range of Zync-7000 applications are supported, such as driver assistance, factory automation, broadcast camera, smart surveillance systems, consumer equipment, AVB routers, switches and cameras, and military radios and medical imaging.

The Zync-7000 software development environment includes the ARM development environment. ARM ecosystem support and other, vast off-the-shelf software and libraries. The hardware design environment includes the Xilinx ISE Development Suite, plug and play IP portfolio, hardware abstraction layer, and drivers and APIs.

The Zync program status includes the early access program open with over 200 applicants, with the ISE 13.1 Development Suite and the emulation platform. Initial devices are said to be available by 2H 2011. Some of the publically announced Zynq early access customers include Agilent, iVeia, National Instruments, etc.

Lattice intros Platform Manager family

October 12, 2010 Comments off

Lattice's Platform Manager.

Lattice's Platform Manager.

Lattice Semiconductor Corp. has introduced the Platform Manager family — its third-generation mixed-signal devices.

Lattice’s Platform Manager product family consists of two devices — the LPTM10-1247 and the LPTM10-12107, respectively. The LPTM10-1247 device monitors 12 voltage rails and supports 47 digital I/Os. The LPTM10-12107 device monitors up to 12 voltage rails and supports 107 digital I/Os.

The programmable devices will simplify board management design significantly by integrating programmable analog and logic to support many common functions, such as power management, digital housekeeping and glue logic.

By integrating these support functions, Platform Manager devices reduce the cost of these functions compared to traditional approaches, and improves system reliability. It  provides a high degree of design flexibility that minimizes the risk of circuit board re-spins.

More to follow.

Altera intros 28nm Stratix V FPGA family


Altera Corp. has introduced its next-generation 28nm Stratix V FPGA family, said to be the industry’s highest bandwidth FPGA. Offering up to 1.6 Tbps of serial switching capability, Stratix V FPGAs leverage a myriad of new technologies and a leading-edge 28nm process to reduce the cost and power of high-bandwidth applications.

Gangatharan Gopal, country sales manager and office manager for Altera India, announces the Stratix V FPGAs.

Gangatharan Gopal, country sales manager and office manager for Altera India, announces the Stratix V FPGAs.

Manufactured on TSMC’s 28nm high-performance (HP) process, the Stratix V FPGA family provides up to 1.1 million logic elements (LEs), 53-Mbits embedded memory, 3,680 18×18 multipliers and integrated transceivers operating up to an industry-leading 28 Gbps.

Gangatharan Gopal, country sales manager and office manager for Altera India,  said that the FPGAs are suitable for devices used in next-generation high bandwidth systems. According to Altera, these offer 35 percent higher performance than alternative process options, as well as 30 percent lower total power versus other generations. These also enable the fastest and most power efficient transceivers.

He pointed out that Altera has been delivering innovations from the core to the I/O that provide higher system performance at lower cost and power.

Altera’s 28nm Stratix V FPGAs are said to have broken through the bandwidth barrier. The company is  also said to be dramatically improving the density and I/O performance of the FPGAs, and further strengthening their competitive position versus ASICs and ASSPs.

Altera’s devices incorporate the industry’s highest level of application-targeted hard intellectual property (IP) for increased system integration and performance without the cost and power penalty.

The FPGA family itself includes four variants that address a broad range of applications in the wireless/wireline communications, military, broadcast, computer and storage, test and medical markets. These variants include:

* Stratix V GT FPGA – Industry’s only FPGA with integrated 28-Gbps transceivers targeting 100G systems and beyond.
* Stratix V GX FPGA – Supports a wide range of applications with 600-Mbps to 12.5-Gbps transceivers.
* Stratix V GS FPGA – Optimized for high-performance digital signal processing (DSP) applications with 600-Mbps to 12.5-Gbps transceivers.
* Stratix V E FPGA – Highest density FPGA ideal for ASIC prototyping, emulation or high-performance computing applications. Read more…

Categories: 28nm, Altera, FPGA, FPGAs

Are we about to reach end of Moore’s Law?


Here is the concluding part of my discussion with Sam Fuller, CTO, Analog Devices. We discussed the technology aspects of Moore’s Law and

Sam Fuller

Sam Fuller

‘More than Moore’, among other things.

Are we at the end of Moore’s Law?
First, I asked Fuller that as Gordon Moore suggested – are we about to reach the end of Moore’s Law? What will it mean for personal computing?

Fuller replied: “There is definitely still life left in Moore’s law, but we’re leaving the golden age after the wonderful ride that we have had for the last 40 years. We will continue to make chips denser, but it is becoming difficult to continue to improve the performance as well as lower the power and cost.

“Therefore, as Moore’s law goes forward, more innovation is required with each new generation. As we move from Planer CMOS to FinFET (a new technology for multi-gate architecture of transistors); from silicon to more advanced materials Moore’s law will still have life for the next decade, but we are definitely moving into its final stages.

“For personal computing, there is still a lot of innovation left before we begin to run out of ideas. There will continue to be great advances in smart phones, mobile computing and tablets because software applications are really just beginning to take advantage of the phenomenal power and capacity of today’s semiconductors. The whole concept of ‘Internet of things’ will also throw up plenty of new opportunities.

“As we put more and more sensors in our personal gadgets, in factories, in industries, in infrastructures, in hospitals, and in homes and in vehicles, it will open up a completely new set of applications. The huge amount of data generated out of these sensors and wirelessly connected to the Internet will feed into the big data and analytics. This would create a plethora of application innovations.”

What’s happening in the plane?
The plane opportunity – 90nm – 65nm – 45nm – 22nm – 20nm – 14/18nm – is starting to get difficult and probably won’t work at 12nm, for purely physics reasons. What is Analog Devices’ take on this?

Fuller said: “You are right! We have been going from 45 nm down to lower nodes, it’ll probably go down to 10 nm, but we are beginning to run into some fundamental physics issues here. After all, it’s a relatively finite number of atoms that make up the channels in these transistors. So, you’re going to have to look at innovations beyond simply going down to finer dimensions.

“There are FinFETS and other ways that can help move you into the third dimension. We’re getting to a point where we can put a lot of complexity and a number of functions on a single die. We have moved beyond purely digital design to having more analog and mixed signal components in the same chip. There are also options such as stacked dies and multiple dies.

“Beyond integration on a single chip, Analog Devices leads in advanced packaging technologies for System in a Package (SiP) where sensors, digital and analog/mixed signal components are all in a single package as the individual components would typically use different technology nodes and it might not be practical to do such integration on a single die.

“So, the challenge often gets described as “More than Moore”, which is going beyond Moore’s law, bringing those capabilities to do analog processing as well as digital and then integrating sensors for temperature sensing, pressure sensing, motion sensing and a whole range of sensors integrated for enabling the ‘Internet of Things’.

“At Analog Devices, we have the capability in analog as well as digital, and having worked for over 20 years on MEMS devices, we are particularly well positioned as we get into ‘More than Moore’.”
Read more…

NXP’s LPC1500 MCU series drives multiple motors simultaneously

March 5, 2014 Comments off

LPC1500

LPC1500

NXP Semiconductors N.V. recently released the LPC1500 microcontroller series, optimized for fast, easy, and high-precision motor control.

So, what’s unique about the new LPC family? First, the LPC1500 was designed to simplify motor control for the masses. It has the flexibility to drive various types of motors, such as ACIM, PMSM, BLDC, etc. The LPC1500 can also drive multiple motors simultaneously.

These aren’t all! The hardware interconnection between the SCTimer/PWM, ADCs and comparators allow the motor to be driven with little CPU intervention. It has free LPCXpresso IDE and free FOC firmware for sensored and sensorless motors that reduces cost and improves time to market.

Looking at the unique features and benefits, the Switch Matrix allows any function to be routed out to any pin making schematic capture and board layout simpler and faster. The SCTimer/PWM block is unique to NXP.

Benefits are, it can run independently of the CPU and generate extremely precise PWM waveforms for quiet, smooth, efficient motor drive. The 2x 2Msps 12b,12ch ADCs can measure simultaneous phase currents to determine precise motor position and speed. There are four comparators for fast system shutdown upon fault detection.

The LPC1500 is suitable for large appliances, HVAC, building automation, factory automation, industrial pumps and generators, digital power, remote sensing, etc.

How will the LPC1500 aid embedded engineers? According to NXP, it saves time to market using the free FOC firmware and GUI tuning tool. It also saves system cost by using only one system MCU, e.g., HVAC typically has one MCU for fan control and one MCU for the compressor. LPC1500 can control both.

The LPC1500 feature set makes it ideal for sensorless motor control removing the need for sensored motors and allowing customers to switch to cheaper sensorless motors. As the SCTimer/PWM can run independently of the CPU, the freed up CPU bandwidth can be used to control other parts of the system for example the LPC1500 can be used for both the control and motor board in a washing machine.

NXP is currently working with customers to understand their future requirements and developing the roadmap to match their needs.

Xilinx announces 20nm All Programmable UltraSCALE portfolio

December 11, 2013 Comments off

Xilinx Inc. has announced of its 20nm All Programmable UltraScale portfolio with product documentation and Vivado Design Suite support.

Neeraj Varma, director-Sales, India, Xilinx, said: “We are enabling All Programmable and smarter systems. We are using smart IP. We are aligning to produce smarter systems. We are helping customers to differentiate their products faster.

“In future, we will go with concurrent nodes with FPGAs, SoCs and 3D ICs. As per our estimates, 28nm will have a very long life. We shipped the 20nm device in early Nov. 2013. It complements 28nm or new high-performance architectures. 16nm complements 20nm with FinFET, multiprocessing, memory.”

Virtex UltraScale device.

Virtex UltraScale device.

Strategy execution has kept Xilinx a generation ahead. As of Dec. 2013, its 20nm portfolio is available to customers. There are two major announcements from Xilinx.

* Xilinx 20nm All Programmable UltraScale portfolio now available with ASIC-class architecture and ASIC-strength design solution.

* Xiilinx doubles industry’s highest capacity device to 4.4 mn logic, delivering density adantage, a full generation ahead.

KINTEX UltraSCALE – XCKU035, 040, 060, 075, 100, 115.
VIRTEX UltraSCALE – XCVU065, 080, 095, 125, 145, 160.

There is a family migration path. There is scalability for derivative applications. You can leverage PCB investment across platforms. It is future-proof with migration path to 16nm. For making these happen, Xilinx is using the TSMC 20SoC.

Varma added, “We have increased the logic cells in Kintex and Virtex, and added 100G Ethenet blocks and 150G Interlaken blocks.”

The second announcement – highest density in FPGAs in industry. The XCVU440 is the largest in the industry by 4X, a full generation ahead, and uses 50M equivalent ASIC gates. Xilinx is delivering an ASIC-class advantage through silicon, tools and methodology.

There is UltraSCALE ASIC-class architecture, and ASIC-class capabilities. There is also the Vivado ASIC-strength design suite.
UltraFAST is the design methodology. UltraSCALE will support networking, digital video and wireless.

Interconnect bottlenecks impede next generation performance.
* Routing delay dominates overall delay.
* Clock skew consumes more timing margin.
* Sub-optimal CLB packing reduces performance and utilization.

Varma added: “We have solved these issues – as UltraSCALE re-architects the core. There is 90 percent utilization now with maximum performance. We added next-generation routing, ASIC-like clocking – have clocks by segment, and logic cell packing.

“Block-level innovations optimize critical paths for massive bandwidth and processing. We are going to support DDR4, and there will be a lot more security features.”

The Vivado design suite accelerates productivity. Analytical placer solves the interconnect issue.

UltraSCALE apps include:
VIRTEX: 400G OTN switching, 400G transponder, 400G MAC-to-Interlaken bridge, 2x100G Muxponder, ASIC prototyping.
KINTEX: 4×4 mixed mode radio, 100G traffic manager NIC, super high-vision processing, 256-channel ultrasound, 48-channel T/R radar processing.

India poses huge opportunity for DLP: TI

November 14, 2013 Comments off

Kent Novak

Kent Novak

Texas Instruments has been a leader in DLP or digital light processing, a type of projector technology that uses a digital micromirror device. Kent Novak, senior VP, DLP Products, Texas Instruments (TI) mentioned that DLP became the no. 1 supplier of MEMS technology in 2004.

The DLP pico projectors business started in 2009. Now, pico is going into gaming systems, etc. In 2011, it went into the cinema industry. In India, out of 10,000 screens, close to 7,000 are now digital. In 2012, new DLP development kit was launched allowing developers to embed the DLP chip into non-traditional applications in new markets. In 2013, TI started working on DLP automotive chips.

He said: “DLP is an array of millions of digital micromirrors. We ship around 45 million devices. We see India as a growth opportunity for cimemas. In DLP front projection business, we have 60 percent share in India. Only 5 percent of Indian classrooms have projectors, making room for growth.”

In low power pico projection, TI has 95 percent market share in India for standalone pico projection. A phone with pico projection was launched in India with iBall at 35 lumen.

DLP technology is available in India in:
Industrial: Machine vision can improve quality control in the Indian manufacturing sector.
Medical: Intelligent illumination systems for cost effective blood analysis.
Safety: Cost effective, accurate chemical analysis of food and industrial.
Automotive: Infotainment and safety solution being qualified.

DLP in automotive displays has several applications, such as wide field of view head up display (HUD) – app available by 2016, free shape interactive active console – app available by 2017, and smart headlights. Some other features include:

* High image quality: consistent contrast, brightness over lamp.
* Full, deep, accurate cover over lifetime.
* Easily enlarges larger display areas.
* High power efficiency.
* DLP technology automatically reduces reflection.

New market opportunities
There are said to be several new opportunities for DLP. These are in:

Industrial: Machine vision, spectroscopy, interactive display, 3D printing, intelligent lighting, digital light exposure.
Infotainment: Mobile phones, tablets, camcorders, laptops, mobile projection, ultra slim TVs.
Gaming: Dual console gaming, interactive gaming, near eye display.
Digital signage: Interactive surface, storefront interactive, retail engagement.
Automotive: Head up display, interactive display, intelligent lighting.
Medical: Spectroscopy, 3D printing, intelligent lighting.

TI has DLP LightCrafter family of evaluation modules. It enables faster development cycles for end equipment requiring smalll form factor, lower cost and intelligent, high-speed pattern display. The DLP LightCrafter 4500 features the 0.45 WXGA chipset. The DLP chip can enable new and innovative intelligent display apps. If your solution uses, programs or senses light, DLP could be a fit.
DLP catalog offers programmable, ultra-high speed pattern. “DLP is light source agnostic. We use whatever’s most efficient for brightness,” he added.

%d bloggers like this: