Search Results

Keyword: ‘high’

ST intros STM32F4 series high-performance Cortex-M4 MCUs


STMicroelectronics has introduced the STM32F4 series STM32 F4x9 and STM32F401, which are high-performance Cortex-M4 microcontrollers (MCUs).

On the growth drivers for GP MCUs, the market growth is driven by faster migration to 32 bit platform. ST has been the first to bring the ARM Cortex based solution, and now targets leadership position on 32bit MCUs. An overview of the STM32 portfolio indicates high-performance MCUs with DSP and FPU up to 608 CoreMark and up to180 MHz/225 DMIPS.

Features of the STM32F4 product lines, specifically, the STM32F429/439, include 180 MHz, 1 to 2-MB Flash and 256-KB SRAM. The low end STM32F401 has features such as 84 MHz, 128-KB to 256-KB Flash and 64-KB SRAM.

The STM32F401 provides thebest balance in performance, power consumption, integration and cost. The STM32F429/439 is providing more resources, more performance and more features. There is close pin-to-pin and software compatibility within the STM32F4
series and STM32 platform.

The STM32 F429-F439 high-performance MCUs with DSP and FPU are:
• World’s highest performance Cortex-M MCU executing from Embedded Flash, Cortex-M4 core with FPU up to 180 MHz/225 DMIPS.
• High integration thanks to ST 90nm process (same platform as F2 serie): up to 2MB Flash/256kB SRAM.
• Advanced connectivity USB OTG, Ethernet, CAN, SDRAM interface, LCD TFT controller.
• Power efficiency, thanks to ST90nm process and voltage scaling.

In terms of providing more performance, the STM32F4 provides up to 180 MHz/225 DMIPS with ART Accelerator, up to 608 CoreMark result, and ARM Cortex-M4 with floating-point unit (FPU).

The STM32F427/429 highlights include:
• 180 MHz/225 DMIPS.
• Dual bank Flash (in both 1-MB and 2-MB), 256kB SRAM.
• SDRAM Interface (up to 32-bit).
• LCD-TFT controller supporting up to SVGA (800×600).
• Better graphic with ST Chrom-ART Accelerator:
– x2 more performance vs. CPU alone
– Offloads the CPU for graphical data generation
* Raw data copy
* Pixel format conversion
* Image blending (image mixing with some transparency).
• 100 μA typ. in Stop mode.

Some real-life examples of the STM32F4 include the smart watch, where it is the main application controller or sensor hub, the smartphone, tablets and monitors, where it is the sensor hub for MEMS and optical touch, and the industrial/home automation panel, where it is the main application controller. These can also be used in Wi-Fi modules for the Internet of Things (IoT), such as appliances, door cameras, home thermostats, etc.

These offer outstanding dynamic power consumption thanks to ST 90nm process, as well as low leakage current made possible by advanced design technics and architecture (voltage scaling). ST is making a large offering of evaluation boards and Discovery kits. The STM32F4 is also offering new firmware libraries. SEGGER and ST signed an agreement around the emWin graphical stack. The solution is called STemWin.

Higher levels of abstraction growth area for EDA

September 1, 2013 2 comments

Dr. Ajoy Bose

Dr. Ajoy Bose

San Jose, USA-based Atrenta’s SpyGlass Predictive Analyzer gives engineers a powerful guidance dashboard that enables efficient verification and optimization of SoC designs early, before expensive and time-consuming traditional EDA tools are deployed. I recently met up with Dr. Ajoy Bose, chairman, president and CEO, Atrenta, to find out more.

I started by asking how Atrenta provides early design analysis for logic designers? He said: “The key ingredient is something we call predictive analysis. That is, we need to analyze a design at a high level of abstraction and predict what will happen when it undergoes detailed implementation. We have a rich library of algorithms that provide highly accurate ‘predictions’, without the time and cost required to actually send a design through detailed implementation.”

There’s a saying: electronic system level (ESL) is where the future of EDA lies. Why? Its because the lower level of abstraction (detailed implementation) of the EDA market is undergoing commoditization and consolidation. There are fewer solutions, and less differentiation between them. At the upper levels of abstraction (ESL), this is not the case. There still exists ample opportunity to provide new and innovative solutions.

Now, how will this help EDA to move up the embedded software space? According to Dr. Bose, the ability to do true hardware/software co-design is still not a solved problem. Once viable solutions are developed, then EDA will be able to sell to the embedded software engineer. This will be a new market, and new revenue for EDA.

How are SpyGlass and GenSys platforms helping the industry? What problems are those solving? Dr. Ajoy Bose said: “SpyGlass is Atrenta’s platform for RTL signoff. It is used by virtually all SoC design teams to ensure the power, performance and cost of their SoC is as good as it can be prior to handoff to detailed implementation.SpyGlass is also used to select and qualify semiconductor IP – a major challenge for all SoC design teams.

“GenSys provides a way to easily assemble and modify designs at the RTL level of abstraction. As a lot of each SoC is re-used design data, the need to modify this data to fit the new design is very prevalent. GenSys provides an easy, correct-by-construction way to get this job done.”

How does the SpyGlass solve RTL design issues, ensuring high quality RTL with fewer design bugs? He added that it’s the predictive analysis technology. SpyGlass provides accurate and relevant information about what will happen when a design is implemented and tested. By fixing these problems early, at RTL, a much higher quality design is handed off to detailed implementation with fewer bugs and associated schedule challenges.

On another note, I asked him why Apple’s choice of chips a factor in influencing the global chip industry? The primary reason is their volume and buying power. Apple is something of a “King Maker” when it comes to who manufactures their chips. Apple is also a thought leader and trend setter, so their decisions affect the decisions of others.

Finally, the global semiconductor industry! How is the global semicon industry doing in H1-2013? As per Dr. Bose: “We see strong growth.  Our customers are undertaking many new designs at advanced process technology nodes. We think that this speaks well for future growth of the industry.  At a macro level, the consumer sector will drive a lot of the growth ahead.  For EDA, the higher levels of abstraction is where the growth will be.”

Exar serving high-growth areas with innovative value-added solutions


Louis DiNardo.

Louis DiNardo.

Exar Corp., established 1971, is headquartered in Fremont, USA, and has design centers in Silicon Valley and Hangzhou, China. Louis DiNardo, president and CEO, Exar, said that the company’s strategic model is to serve high-growth markets with innovative value-added solutions. He was speaking at the ongoing 13th Globalpress Electronics Summit in Santa Cruz, USA.

Exar offers solutions that includes high performance analog-mixed signal as well as data management solutions. Its current market focus is on networking and storage, industrial and embedded systems, and communications infrastructure. It is focusing on power management products, connectivity products and data management solutions.

Power management products include those for analog power management such as switching regulators, switching controllers, linear regulators, supervisory controllers, etc, For programmable power, Exar focuses on multiple output synchronous buck controllers.

Some of the products include POWER, the Exar Programmable PowerSuite 5.0. Recently, Calceda has been powering servers with the PowerXR technology.

For data compression and security, Exar is offering hardware acceleration and software solutions meant for compression and decompression, acceleration, encryption and decryption. There are high growth markets supporting social networking, industrial Internet and financial technology as well.

Exar’s Panther I is a first generation compression/security engine with the PCIe interface. The Panther II is a second generation compression and security engine with PCIe and FPGA interface.

III-V high mobility semiconductors for advanced CMOS apps


Clement Merckling, IMEC, Belgium, presented on the epitaxial growth and in-situ passivation requirements for III-V high mobility semiconductors for advanced CMOS applications at the Semicon Europa in Dresden, Germany.

The motivations for III-V MOS transistors include higher electron carrier mobility (@ low-field), more efficient source injection, smaller energy bandgap, VDD scaling, band engineering capabilities, lower temperature processing, high-K gate first process possible and 3D compatible architecture.

IMEC III-V EPI.

IMEC III-V EPI.

The International Technology Roadmap for Semiconductors (ITRS) believes in Ge and III-V. IMEC epi + in-situ oxide ‘tool park’ involves MBE (molecular beam epitaxy) and MOVPE (metalorganic vapour phase epitaxy) III-V growth techniques. The III-V EPI is clustered with in-situ oxide capabilities.

The AIXTRON Crius 300mm looks at III-V selective epitaxial growth (III-As and III-P). The AMAT/RIBER III-V logic cluster 300mm looks at the III-V selective epitaxial growth (III-As and III-P), in-situ surface analysis, handled by RIBER ISA 300, and oxide (ALD and MBE) chambers in-situ. The RIBER MBE 49 cluster 200mm looks at the III-V solid source epitaxy (III-As and III-Sb) oxide chamber in-situ.

Main issues and challenges
Main issues for III-V integration include III-V integration on Si platform. There are all sorts of crystalline defects. Next, gate stack formation on MOS. It is much more difficult to passivate interfaces. Smaller bandgap, means, an increased Ioff due to band-to-band-tunneling.

Challenges with III-V heteroepitaxy on Si include Lattice mismatch, anti-phase boundaries (APB), mismatch stress relaxation and related defects such as dislocations at interface, and extended defects (threading arms, SFs). There are other defects caused at isolation interfaces, such as twins, stacking faults, facets, etc. Finally, there is interdiffusion at heterogeneous interfaces.

However, it is possible to achieve high quality heteroepitaxy by direct epitaxy using metamorphic buffer and defect confinement and wafers bonding. Strain relaxed buffer (SRB) is among the options for III-V materials integration at imec.

There can be InGaAs metamorphic buffer, with the MBE growth of low defect density and device quality III-V heterostructure using a suitable metamorphic buffer. Or, there can be III-Sb on Si by SS-MBE, that provides a route to relax III-V.

Defect confinement is possible via ‘necking effect’. The selective area growth (SAG) of III-V compounds via MOVPE (or CBE ?) means the defects are trapped at trench edges. The other way is dislocation trapping in narrow STI trenches for aspect ratio >2. There is low defect density material in the upper part of the trench.

Elimination of APBs for on-axis Si (001), Si recess engineering, is possible either via rounded-Ge surface or V-grooved surface. In the rounded-Ge surface, step creation is done by surface engineering of a Ge seed layer. Double steps on a Ge surface are more stable and easy to form with a lower thermal budget than on Si.

In V-grooved surface, (111) surface is obtained either by KOH or TMAH wet etching. Growth inside a pre-defined Si {111} enclosure promote initial III-V nucleation uniformity.

The ‘necking effect’ approach presents its own challenges. One, perpendicular view, where there is efficient defect necking effect with side wall and parallel view, which allows viewing high defect density.
Read more…

Highlights of Union Budget 2012-13


Here are some of the highlights from the Union Budget 2012, tabled in the Indian Parliament this morning by Pranab Mukherjee, Union Minister of Finance.

* National Manufacturing Policy announced with the objective of raising, within a decade, the share of manufacturing in GDP to 25 percent and creating of 10 crore jobs.
* Proposal to extend the sunset date for setting up power sector undertakings by one year for claiming 100 percent deduction of profits for 10 years.
* Proposal to tax all services except those in the negative list comprising of 17 heads.
* Basic customs duty proposed to be enhanced for certain categories of completely built units of large cars/MUVs/SUVs.
* Excise duty on large cars also proposed to be enhanced.
* Relief proposed to be extended to sectors such as steel, textiles, branded readymade garments, low-cost medical devices, labour-intensive sectors producing items of mass consumption and matches produced by semi-mechanised units.
* Concessions and exemptions proposed for encouraging the consumption of energy-saving devices, plant and equipment needed for solar thermal projects.
* Concession from basic customs duty and special CVD being extended to certain items imported for manufacture for hybrid or electric vehicle and battery packs for such vehicles.
* Exemption limit for the general category of individual taxpayers proposed to be enhanced from Rs. 1,80,000 to  Rs. 2,00,000 giving tax relief of Rs. 2,000.
* Full exemption from basic customs duty on LCD and LED TV panels, and parts of memory card for mobile phones.
* Customs duty on warning systems/track upgrade equipment for railways reduced from 10 percent to 7.5 percent.
* Our MSME sector is fertile ground for the production of low-cost medical devices. In order to provide impetus to this sector, I propose to reduce basic customs duty to 2.5 percent with concessional CVD of 6 percent on specified parts, components and raw materials for the manufacture of some disposables and instruments. Full exemption from basic customs duty and CVD is also being extended to specified raw materials for the manufacture of coronary stents and heart valves. These concessions would be subject to actual user condition.
* To promote investment in R&D, it is proposed to extend the weighted deduction of 200 per cent for R&D expenditure in an in-house facility beyond March 31, 2012 for a further period of five years.
* Kisan Credit Card (KCC) is an effective instrument for making agricultural credit available to the farmers. KCC scheme will be modified to make KCC a smart card which could be used at ATMs.

Categories: automotive, solar

SanDisk’s iNAND Extreme family of embedded eMMC storage devices for high-end mobile and tablets


SanDisk Corp.’s embedded storage is in most of all top computing device brands. It recently launched the iNAND Extreme family of embedded eMMC storage devices for high-end mobile and tablets.

Gadi Ben-Gad, product marketing manager, SanDisk.

Gadi Ben-Gad, product marketing manager, SanDisk.

Gadi Ben-Gad, product marketing manager for SanDisk, said: “This very high performance line of iNAND products joins the existing iNAND and iNAND Ultra lines, which are very successful in the mobile, tablet and consumer electronics markets. The first generation of these products (iNAND Extreme) will be sampling in a few weeks.

“iNAND Extreme products offer up to 50MB/s write and 80MB/s read sequential performance and very high random performance designed for the next generation of high-end mobile and tablet devices. SanDisk continues to monitor market trends and requirements and diversifying the embedded offering in the market, to answer to the different requirements of the different mobile, tablet and consumer electronics segments.”

So, how will SanDisk play a strong role in these areas? According to Ben-Gad, SanDisk works closely with a broad and diverse set of mobile and tablet OEMs. The company also works very closely with the majority of the leading mobile chipset vendors and standardization bodies in the mobile/tablet ecosystem to ensure optimal integration and technological support.

He added: “SanDisk is a fully vertically integrated company with substantial expertise in NAND flash technology, system technology and product design with years of experience in designing embedded and removable mobile storage devices. SanDisk is very well-positioned to understand, develop and support the future storage requirements in mobile, tablet and consumer electronics devices.”

Finally, I must thank Ms. Jody Privette Young, LymanPR, for making this happen.

LTE will see larger deployments, higher volumes than WiMAX!


Craig Miller, VP, Marketing & Business Development, Sequans Communications.

Craig Miller, VP, Marketing & Business Development, Sequans Communications.

Late last month, I had the pleasure of attending a Maravedis seminar on 4Ggear: Equipment market update and chipset trends. It also included a market perspective from Sequans Communications, presented by Craig Miller, VP, Marketing & Business Development. This post will highlight Craig’s presentation. Maravedis’ post will follow thereafter.

4G trends: Device volumes and devices
During 2010, WiMAX device shipments are on pace to triple vs. 2009. The volume is well balanced in 2010. Key growth drivers include handset adoption, deployments in India as well as continued growth in US, Japan, SE Asia, and the MEA.

As for 4G devices, in the beginning (ca. 2006-2008), the device shipments were dominated by fixed broadband CPE. Today, the device ‘mix’ is shifting toward mobile broadband devices, netbooks and mass-market multimode handsets. Tomorrow, we shall witness more mass-market handsets, plus mobile Internet devices (MIDs) and other CE devices, as well as the emergence of M2M applications.

According to Miller, mass market prices are here now, enabled by low cost, high-integration chipsets. Read more…

Xilinx to build next-gen FPGAs on 28nm high-k metal gate


Xilinx intros world’s first ultra-high-end FPGA based on 28nm high-k metal gate.

Xilinx intros world’s first ultra-high-end FPGA based on 28nm high-k metal gate.

Xilinx Inc. has announced the foundation for a next-generation of Xilinx programmable platforms that will give system designers FPGAs that consume half the power at twice the capacity than previously possible for addressing the Programmable Imperative.

Xilinx’s architecture for next-generation FPGA products will be built on 28nm high-k metal gate (HKMG), high-performance, low-power process at TSMC and Samsung.

According to Suresh  Menon, vice president, product development, Programmable Platforms Development, features of the next-generation FPGAs include:

* Reducing total power consumption enables customers to meet system integration and high-performance targets within their power budgets.
* Scalable unified architecture reduces customers’ investment developing and deploying products.
* Xilinx maximizes the value of 28nm with high-performance, low-power process to accelerate platforms for addressing the programmable imperative.

He highlighted some industry challenges. These include the decline ASICs — with development costs, risk and complexity, and time to market being 2x per node, leading to ASIC starts being 50 percent less per node and the ASIC business at -5 percent per year. The ASSP business model is also challenged. While it has grown at 22 percent CAGR from 2004-2009, the operating margins have declined by 27 percent, thus making tier 2 unsustainable.

Menon cited some examples addressing the programmable imperative — wireless communications, wired communications, industrial scientific and medical (ISM), automotive, consumer, and aerospace and defense.

Lower power initiatives are universal. The challenge is to lower the total power consumption, This has to be achieved without giving up on performance or differentiation. Some examples include: green base stations to reduce carbon footprint, eco-friendly server complexes and communication hubs, automotive power restricted environment, and size, weight, and power requirements in defense.

Consumer demand is also driving network bandwidth. A challenge would be enable 1Terabit switch fabric and 400+Gbps line cards. This could been addressed by providing support for 1+Tbps full-duplex bandwidth for high-end switch fabric, enabling high-performance, non-blocking capability with flexibility to integrate QoS security, etc., and extending support for 40G, 100G, 200G, and 400G line cards.

Menon said, “We are delivering lower power through technology innovation, enabling the lowest power, high performance FPGA.”  This is being done as follows:

* Reduce static power consumption by 50 percent.
– 28nm high-K metal gate high-performance, low power process reduces static power compared to 28nm high performance process.
* Lower dynamic power consumption using architectural innovations.
– Transistor choice and multi-gate oxide techniques reduce dynamic power consumption despite trends.
* Enable additional 20 percent power reduction using advanced tool innovations.
– Clock gating technology.
– Fifth generation partial reconfiguration. Read more…

Categories: 28nm, FPGA market, FPGAs, HKMG, Xilinx

Highest efficiency Si solar cells realised with n-Si — Prof. Weber, Fraunhofer ISE

November 2, 2009 1 comment

Prof. Eicke R. Weber, director, Fraunhofer ISE, GermanyProf. Eicke R. Weber, director, Fraunhofer ISE, Germany, will be delivering the opening keynote at the inauguration of the SOLARCON India 2009 and India Semiconductor Association (ISA) PV Conclave next Monday in Hyderabad.

Thanks to ISA’s help, I was able to get into a conversation with him, where he elaborated on the capabilities of n-type solar cells, how the solar PV industry is dealing with recession, and well, lessons to learn for India.

Why n-type is better than p-type solar cells?
Researchers at Fraunhofer Institute for Solar Energy Systems ISE have developed new methods and cell concepts for the manufacture of n-type silicon solar cells. What are the capabilities of n-type silicon solar cells that makes them better than p-type?

Prof. Weber said: “The main challenge in the operation of a solar cell is to collect the minority carriers created by sun illumination. Silicon solar cells are commonly made from p-type silicon, mainly because the carrier mobility of the minority carriers, electrons for p-Si, is higher than that of holes, the minority carriers in n-type Si.

“However, if contamination plays a role, which is especially the case for highest-efficiency cells, n-type silicon has distinct advantages because metal atoms like to form electrically active pairs with acceptor dopants that degrade performance.

In n-type silicon are donor dopants instead of the acceptor dopants in p-Si, so that carrier lifetime is better than in p-type Si. This can more than compensate the disadvantage of lower minority carrier mobility. Therefore, highest efficiency Si solar cells are usually realised with n-Si.”

Fraunhofer CSE has also opened a new PV module lab for research, development, testing and evaluation of new materials and production processes for photovoltaic solar modules with the aim to increase module energy yield, reduce cost, and extend module durability.

There is a Fraunhofer CSE in Boston and a Fraunhofer ISE in Freiburg. At the CSE in Boston, it is just starting with the process to establish such a new testing facility. However, this facility is already in place at the Fraunhofer ISE in Freiburg.

How can solar makers turn around?
Solar manufacturers are said to be already losing money this year and the capacity utilization is 27.9 percent. Also, the days of inventory are currently 122, up from 71 days in 2008. If they continue to add new capacity, things will only worsen, exasperating the recession, it can get difficult for them to turn this around.

Prof. Weber said that right now, there is already again a shortage in the module market.

“In Germany, we will see in 2010 at least a 10 percent decrease of the feed-in rate for new systems, so that after the substantial price drops in the first half of 2009 the second half of 2009 offered an unusually lucrative opportunity for the installation of PV systems.

“It remains to be seen whether this market pull will be carried into 2010. On the two-three year time scale the key question will be when the US market really starts, at best by offering in selected staters a lucrative feed-in rate.

“I am convinced, if this demonstrates quick market penetration as we experienced in Germany it will quickly spread throughout the USA, generating a PV market much larger than the German market as the US enjoys many high-sunshine regions in the South.

Lessons for India
Obviously, there are lessons to learn for the Indian solar/PV industry.

As per Prof. Eicke Weber, the key issue for increasing the PV market is to create attractive options for investors.

“In grid-connected systems this can be best done by attractive feed-in rates that have to be tailored for the respective region, and should offer 8-12 percent annual return from the produced PV electricity.”

In off-grid systems, the state might offer investment or tax incentives to allow the creation of lucrative investment opportunities, he added. Read more…

Top 5 high growth markets driving (semicon?) recovery, and top 10 hot and emerging technology platforms

October 14, 2009 11 comments

Today, I received two wonderful reports — one, highlighting the top 5 high growth markets driving (semiconductor) recovery, and two, the top 10 hot and emerging technology platforms well poised to profoundly impact manifold sectors across the globe while offering potential high RoI for investors!

First, semiconductors! Semico Research has come up with a report that highlights the top 5 high growth segments driving growth and recovery in the semiconductor segment. For the record, 2009 is likely to see the global semiconductor industry decline by 12.5 percent. The top 5 segments according to Semico Research are:

* Netbooks

* Portable navigation devices (PNDs)

* Digital TVs

* DVD recorders

* Video game consoles

Hey, there really seems to be a lot of light at the end of the tunnel for the consumer electronics industry!

On netbooks, I think Intel needs to be given most, if not, all of the credit. Here’s what iSuppli has to say in its fast facts for Intel’s Q3 results:

* Intel also capitalized on the continued rise in demand for netbook PCs. The company dominates the netbook microprocessor market with its Atom chip. iSuppli predicts global netbook shipments will rise to 22.2 million units in 2009, up 68.5 percent from 13.2 million in 2008.

* While Atom represents only a small share of Intel’s total revenue, its profitability is disproportionately high. “Netbook microprocessors are a high-margin product because they utlilize old technology,” said Matthew Wilkins, principal analyst, compute platforms, for iSuppli. “The Atom is based on the old Pentium M microprocessor and uses a mature manufacturing process. Because of this, Intel is getting very high yields and an extremely high margin on the Atom.”

On PNDs, SatNav has recently introduced a Bluetooth enabled multifunction PND. Also, In-Stat reports that the worldwide unit shipments for PNDs will reach approximately 56 million units in 2012.

However, iSuppli has just sent out a story to me, saying that PNDs have now entered a period of slowing growth, spurring companies throughout the supply chain to re-evaluate their business models. Interesting!

As for digital TVs, according to DisplaySearch, developed markets are starting 2009 with strong growth and emerging markets are transitioning from CRT to LCD TVs faster than expected. However, plasma (PDP) TV is expected to fall about 2 percent Y/Y to 14.1 million in 2009 after strong 28 percent growth in 2008. As per iSuppli, OLED-TV revenue will likely rise by a factor of 240 by 2015—but still remain a niche. Let’s see!

DisplaySearch’s total global TV forecast is 200.4 million units in 2009, down 3 percent Y/Y, the first decline in total shipments in recent memory as the global recession and rising unemployment continue to take a toll on demand. However, the slowdown will be temporary as the worldwide economy emerges from recession and new markets enter the initial stages of the flat panel and digital TV transition.

Among DVDs, Samsung has introduced its first internal Blu-ray disc combo drive with BD-R and 8X BD-ROM read speed. Also, Flex-DVD is the latest technology in the DVD replication industry. This single layer format has the same capacity of a DVD-5 (4.7GB for standard size and 1.1GB for 3″ Mini DVD), but is half the thickness of the standard DVD.

Video game consoles — I find it quite interesting! It has been reported that the only products to see a decline in unit shipments in the second quarter were handheld video games, video game consoles, etc. Watch this market segment!

Now, to the top 10 hot and emerging technologies! According to a report from Frost & Sullivan, these are:

* Nanomaterials

* Flexible electronics

* Advanced batteries and energy storage

* Smart materials

* Green IT

* CIGS solar

* 3D integration

* Autonomous systems

* White biotech

* Lasers

Flex-DVD, above, is a great example of flexible electronics. Green IT — although a much abused term, it has certainly been on the top of the charts for quite some time now. Battery technologies and energy storage — yes, certainly. There are rightful places for CIGS solar — a point also made by Dr. Robert Castellano of The Information Network — and smart materials, as well as lasers and white biotech.

Well, what do you think folks? Do you agree with these top 5 and top 10 lists?

%d bloggers like this: