Search Results

Keyword: ‘include’

IoT gathering pace as revolution: Guru Ganesan


IoT gathering pace as revolution: Guru Ganesan

By 2020, there will be over 8 billion people on our planet. This will also bring tremendous innovations and challenges. ARM has been connecting intelligence at every level, said Guru Ganesan, president and MD, ARM India.

He was delivering the guest keynote at the recently held CDNLive 2014 event in Bangalore, India.

Newer apps are helping connect with the world. As per Gartner, $27 billion worth apps were downloaded in 2013. By 2020, this is estimated to rise to $80 billion.

According to Ganesan, consumer trends are driving innovation in embedded apps, including rich user interface (UI). ARM is also at the heart of wearable technologies, for example, Smart Glasses from Google. Some examples from India include Lechal from Ducere Technologies, GOQ Pi remote fitness companion, Fin+ navigation and device control gesture based device from RHLVision, and Smarty Ring that brings instant smartphone alerts to your fingers from Chennai.

So, what are the key requirements for wearables? These are video/image, audio, display, software, OS, connectivity and battery life! In 2013, over 1 billion smartphones were shipped. Further, mobile data 12 times over between now and 2018.

In medical electronics, besides humans, it has extended to keeping the cattle healthy and have intelligent agriculture with OnFarm, by using sensors. IoT as a revolution is gathering pace. As per a survey conducted by ARM, 95 percent of the users expect to be using IoT over the next three years. Common standards are being developed for interoperability. Similarly, mobility and connectivity are also happening in automotives.

Now, let’s see the development challenges for high-end embedded. Embedded applications today integrate more functions. Consequently, design and verification challenges continue to grow. Further, lot of smart devices are now generating lot of data. The question is: how are we using that data?

Ganesan added that by 2020, there will be new challenges in transportation, healthcare, energy and education. Once devices start communicating with each other, we are likely to see the evolution of a smart infrastructure.

Categories: Semiconductors

Innovating in system of systems: Lip Bu-Tan


There have been several innovations of innovations happening in the global technology industry. The IoT, mobility, cloud computing, etc., are creating opportunities for the system of systems, according to Lip-Bu Tan, president and CEO, Cadence Design Systems Inc.

Tan was delivering the main keynote. at the recently held CDNLive 2014 in Bangalore, India,

Some of the trends driving the global semiconductor market growth in the end markets include automotives at $24 billion, computers at $76 billion, industrial electronics at $14,1 billion, medical electronics at $12.5 billion, and mobile phones at $100 billion. In India, especially, a lot of fabless companies are said to be coming up.

The tablet is a system of systems. It has communications, navigation, recording and photography, etc. Even the automotive vehicle is a convincing example. Next, there is the IoT. There are said to be diverse needs for the IoT.

There are said to be several challenges for the system of systems. Some of these are more IP and software requirements, and more needs for low power and mixed signal. System design enablement requires system integration, packaging and board, etc.

Cadence has a comprehensive SoC IP solution. The mixed signal verification solution ensures functionality, reliability and performance. Cadence also introduced the Voltus-Fi custom power integrity solution in Shanghai the week before. Its Quantus QRC extraction solution gives up to 5X performance.

Next, the Jasper acquisition expands the Cadence development suite. Cadence also provides the FPGA-based prototyping with Palladium flow for software development.

Tan concluded that new technologies always require closer collaboration — from IP through manufacturing. Cadence is here to help designers innovate — from systems to silicon.

Categories: Semiconductors

SEMI materials outlook: Semicon West 2014


Source: SEMI, USA.

Source: SEMI, USA.

At the recently held Semicon West 2014, Daniel P. Tracy, senior director, Industry Research and Statistics, SEMI, presented on SEMI Materials Outlook. He estimated that semiconductor materials will see unit growth of 6 percent or more. There may be low revenue growth in a large number of segments due to the pricing pressures and change in material.

For semiconductor eequipment, he estimated ~20 percent growth this year, following two years of spending decline. It is currently estimated at ~11 percent spending growth in 2015.

Overall, the year to date estimate is positive growth vs. same period 2013, for units and materials shipments, and for equipment billings.

For equipment outlook, it is pointing to ~18 percent growth in equipment for 2014. Total equipment orders are up ~17 percent year-to-date.

For wafer fab materials outlook, the silicon area monthly shipments are at an all-time high for the moment. Lithography process chemicals saw -7 percent sales decline in 2013. The 2014 outlook is downward pressure on ASPs for some chemicals. 193nm resists are approaching $600 million. ARC has been growing 5-7 percent, respectively.

For packaging materials, the Flip Chip growth drivers are a flip chip growth of ~25 percent from 2012 to 2017 in units. There are trends toward copper pillar and micro bumps for TSV. Future flip chip growth in wireless products are driven by form factor and performance. BB and AP processors are also moving to flip chip.

There has been growth in WLP shipments. Major applications for WLP are driven by mobile products such as smartphones and tablets. It should grow at a CAGR of ~11 percent in units (2012-2017).

Solder balls were $280 million market in 2013. Shipments of lead-free solder balls continues to increase. Underfillls were $208 million in 2013. It includes underfills for flip chip and packages. The increased use of underfills for CSPs and WLPs are likely to pass the drop test in high-end mobile devices.

Wafer-level dielectrics were $94 million market in 2013. Materials and structures are likely to enhance board-level reliability performance.

Die-attach materials has over a dozen suppliers. Hitachi Chemical and Henkel account for major share of total die attach market. New players are continuing to emerge in China and Korea. Stacked-die CSP package applications have been increasing. Industry acceptance of film (flow)-over-wire (FOW) and dicing die attach film (DDF) technologies are also happening.

 

How Intel competes on today’s fabless ecosystem?


The SEMI/Gartner Market Symposium was held Semicon West 2014 at San Francisco, on July 7. Am grateful to Ms. Becky Tonnesen, Gartner, and Ms Agnes Cobar, SEMI, for providing me the presentations. Thanks are also due to Ms Deborah Geiger, SEMI.

Dean Freeman, research VP, Gartner, outlined the speakers:

• Sunit Rikhi, VP, Technology and Manufacturing Group, GM, Intel Custom Foundry Intel, presented on Competing in today’s Fabless Ecosystem.

• Bob Johnson, VP Research, Gartner, presented the Semiconductor Capital Spending Outlook.

• Christian Gregor Dieseldorff, director Market Research, SEMI, presented the SEMI World Fab Forecast: Analysis and Forecast for Fab Spending, Capacity and Technology.

• Sam Wang, VP Research Analyst, Gartner, presented on How Foundries will Compete in a 3D World.

• Jim Walker, VP Research, Gartner, presented on Foundry versus SATS: The Battle for 3D and Wafer Level Supremacy.

• Dr. Dan Tracy, senior director, Industry Research & Statistics, SEMI, presented on Semiconductor Materials Market Outlook.

Let’s start with Sunit Rikhi at Intel.

As a new player in the fabless eco-system, Intel focuses on:
* The value it brings to the table.
* How it delivers on platforms of capability and services.
* How it leverage the advantages of being inside the world’s leading Integrated Device Manufacturer (IDM)
* How it face the challenges of being inside the world’s leading IDM.

Intel sunit-rikhiIntel has leadership in silicon technologies. Transistor performance per watt is the critical enabler for all. Density improvements offset wafer cost trends. Intel currently has ~3.5-year lead in introducing revolutionary transistor technologies.

In foundry capabilities and services platforms, Intel brings differentiated value on industry standard platforms. 22nm was started in 2011, while 14nm was started in 2013. 10nm will be starting in 2015. To date, 125 prototype designs have been processed.

Intel offers broad capability and services on industry standard platforms. It also has fuller array of co-optimized end-to-end services. As for the packaging technology, Intel has been building better products through
multi-component integration. Intel has also been starting high on the yield learning curve.

Regarding IDM challenges, such as high-mix-low-volume configuration, Intel has been doing configuration optimization in tooling and set-up. It has also been separating priority and planning process for customers. Intel has been providing an effective response for every challenge.

Some of Intel Custom Foundry announced customers include Achronix, Altera, Microsemi, Netronome, Panasonic and Tabula.

Is GaN-on-Si disruptive technology?


The mass adoption of GaN on Si technology for LED applications remains uncertain. Opinions regarding the chance of success for LED-On-Si vary widely in the LED industry from unconditional enthusiasm to unjustified skepticism. Although significant improvements have been achieved, there are still some technology hurdles (such as performance, yields, CMOS compatibility, etc.).

The differential in substrate cost itself is not enough to justify the transition to GaN on Si technology. The main driver lies in the ability to manufacture in existing, depreciated CMOS fabs in 6” or 8”. For Yole Développement, if technology hurdles are cleared, GaN-on-Si LEDs will be adopted by some LED makers, but it will not become an industry standard.

Yole is more optimistic about the adoption of GaN on Si technology for power GaN devices. Contrary to LED industry, where GaN on Sapphire technology is the main stream and presents a challenging target, GaN on Si will dominate the GaN based power electronics applications. Although the GaN based devices remain more expensive than Si based devices, the overall cost of GaN device for some applications are expected to be lower three years from now according to some manufacturers.

Source:  Yole Développement, France.

Source: Yole Développement, France.

In 2020, GaN could reach more than 7 percent of the overall power device market and GaN on Si will capture more than 1.5 percent of the overall power substrate volume, representing more than 50 percent of the overall GaN on Si wafer volume, subjecting to the hypothesis that the 600 V devices would take off in 2014-2015.

GaN targets a $15 billion served available device market. GaN can power 4 families of devices and related applications. These are blue and green laser diodes, LEDs, power electronics and RF (see image).

Regarding GaN-on-Si LED, there will be no more than 5 percent penetration by 2020. As for GaN-on-GaN, it will be less than 2 percent. Yole considers that the leading proponents of LED-On-Si will successful and eventually adopt Si for all their manufacturing. Those include Bridgelux/Toshiba, Lattice Power, TSMC and Samsung. It expects that Silicon will capture 4.4 percent of LED manufacturing by 2020.

GaN wafer could break through the $2000 per 4” wafer barrier by 2017 or 2018, enabling limited adoption in applications that require high lumen output other small surfaces.

Metro450 Conference 2014 discusses all things 450mm wafers!


Thanks to the Enable450 newsletter, sent out by Malcolm Penn, CEO, Future Horizons, here is a piece on the Metro450 Conference 2014, held earlier this year in Israel.

450Metro450 is an Israel-based consortium with the goal of helping the metrology companies advance in their fields. The consortium’s members include metrology and related companies, as well as academics who support these companies by performing basic research.

The conference was sponsored by the Israeli Chief Scientist Office, by Applied Materials Israel and by Intel. There were several goals for the conference: to provide an opportunity for industry leaders as well as academicians to meet and discuss the latest developments in the world of metrology, to present these advances to audiences which would normally not be privy to such information, and to learn more about the international effort in 450mm wafer technology.

Over 200 people attended this conference from Israeli companies and academia, as well as from Europe and the United States. Israeli companies included Applied Materials, Jordan Valley, Nova, KLA, Zeiss Israel, and others. Academic members included researchers from the leading Israeli universities, including the Technion, Tel-Aviv U. and Haifa U. European companies were represented by ENIAC, as well as large corporations such as ASML as well SME-based companies. The G450C consortium, based in Albany, N.Y. was also well represented at this conference.

Some of the highlights of the conference included scientific discussions of different metrology methods, and their adjunct requirements, such as improved rapid wafer movement, improved sampling methods and fast computing. Presentations also included an overview of the advances necessary to move the industry forward, optical CD metrology, x-ray metrology, and novel piezo-based wafer movement.

A panel discussed various broad industry trends, including the timeline of 450mm wafers, European programs and the Israeli programs. International speakers discussed the European technology model, risk mitigation of 450 through collaborations, 450 collaborative projects under ENIAC, 450mm wafer movement challenges and metrology challenges beyond 14nm.

This second annual Metro450 conference took place this January at the Technion, Israel.

Set up strong methodology teams to create better verification infrastructure: Synopsys


Arindam Ghosh

Arindam Ghosh

This is the third installment on verification, now, taken up by Synopsys. Regarding the biggest verification mistakes today, Arindam Ghosh, director – Global Technical Services, Synopsys India, attributed these as:

* Spending no time on verification planning (not documenting what needs to be verified) and focusing more on running simulations or on execution.
* No or very low investment in building better verification environments (based on best/new methodologies and best practices); instead maintaining older verification environments.
* Compromising on verification completeness because of tape out pressures and time-to-market considerations.

Would you agree that many companies STILL do not know how to verify a chip?

He said that it could be true for smaller companies or start-ups, but most of the major semiconductor design engineers know about the better approaches/methodologies to verify their chips. However, they may not be investing in implementing the new methodologies for multiple reasons and may instead continue to follow the traditional flows.

One way to address these mistakes would be to set up strong methodology teams to create a better verification infrastructure for future chips. However, few companies are doing this.

Are companies realizing this and building an infrastructure that gets you business advantage? He added that some companies do realize this and are investing in building a better infrastructure (in terms of better methodology and flows) for verification.

When should good verification start?
When should good verification start — after design; as you are designing and architecting your design environment? Ghosh said that good verification starts as soon as we start designing and architecting the design. Verification leads should start discussing the verification environment components with the lead architect and also start writing the verification plan.

Are folks mistaking by looking at tools and not at the verification process itself? According to him, tools play a major role in the effectiveness of any verification process, but we still see a lot of scope in methodology improvements beyond the tools.

What all needs to get into verification planning as the ‘right’ verification path is fraught with complexities? Ghosh said that there is no single, full-proof recipe for a ‘right’ verification path. It depends on multiple factors, including whether the design is a new product or derivative, the design application etc. But yes, it is very important to do comprehensive verification planning before starting the verification process.

Synopsys is said to be building a comprehensive, unified and integrated verification environment is required for today’s revolutionary SoCs and would offer a fundamental shift forward in productivity, performance, capacity and functionality.  Synopsys’ Verification Compiler provides the software capabilities, technology, methodologies and VIP required for the functional verification of advanced SoC designs in one solution.

Verification Compiler includes:
* Better capacity and compile and runtime performance.
* Next-generation static and formal technology delivering performance improvement and the capacity to analyze a complete SoC (Property checking, LP, CDC, connectivity).
* Comprehensive low power verification solution.
* Verification planning and management.
* Next-generation verification IP and a deep integration between VIP and the simulation engine, which in turn can greatly improve productivity.  The constraint engine is tuned for optimal performance with its VIP library. It has integrated debug solutions for VIP so one can do protocol-level analysis and transaction-based analysis with the rest of the testbench.
* Support for industry standard verification methodologies.
* X-propagation simulation with both RTL and low power simulations.
* Common debug platform with better debug technology having new capabilities, tight integrations with simulation, emulation, testbench, transaction debug, power-aware debug , hw/sw debug, formal, VIP and coverage.

Top five recommendations for verification
What would be Synopsys’ top five recommendations for verification?

* Spend a meaningful amount of time and effort on verification planning before execution.
* Continuously invest in building a better verification infrastructure and methodologies across the company for better productivity.
* Collaborate with EDA companies to develop, evaluate and deploy new technologies and flows, which can bring more productivity to verification processes.
* Nurture fresh talent through regular on and off-the-job trainings (on flows, methodologies, tools, technology).
* Conduct regular reviews of the completed verification projects with the goal of trying to improve the verification process after every tapeout through methodology enhancements.

Categories: Semiconductors

Cadence: Plan verification to avoid mistakes!


Apurva Kalia

Apurva Kalia

Following Mentor Graphics, Cadence Design Systems Inc. has entered the verification debate. ;)  I met Apurva Kalia, VP R&D – System & Verification Group, Cadence Design Systems. In a nutshell, he advised that there needs to be proper verification planning in order to avoid mistakes. First, let’s try to find out the the biggest verification mistakes.

Top verification mistakes
Kalia said that the biggest verification mistakes made today are:
* Verification engineers do not define a structured notion of verification completeness.
* Verification planning is not done up front and is carried out as verification is going along.
* A well-defined reusable verification methodology is not applied.
* Legacy tools continue to be used for verification; new tools and technologies are not adopted.

In that case, why are some companies STILL not knowing how to verify a chip?

He added: “I would not describe the situation as companies not knowing how to verify a chip. Instead, I think a more accurate description of the problem is that the verification complexity has increased so much that companies do not know how to meet their verification goals.

“For example, the number of cycles needed to verify a current generation processor – as calculated by traditional methods of doing verification – is too prohibitive to be done in any reasonable timeframe using legacy verification methodologies. Hence, new methodologies and tools are needed. Designs today need to be verified together with software. This also requires new tools and methodologies. Companies are not moving fast enough to define, adopt and use these new tools and methodologies thereby leading to challenges in verifying a chip.”

Addressing challenges
How are companies trying to address the challenges?

Companies are trying to address the challenges in various ways:
* Companies at the cutting edge of designs and verification are indeed trying to adopt structured verification methodologies to address these challenges.

* Smaller companies are trying to address these challenges by outsourcing their verification to experts and by hiring more verification experts.

* Verification acceleration and prototyping solutions are being adopted to get faster verification and which will allow companies to do more verification in the same amount of time.

* Verification environment re-use helps to cut down the time required to develop verification environments.

* Key requirements of SoC integration and verification—including functionality, compliance, power, performance, etc.—are hardware/software debug efficiency, multi-language verification, low power, mixed signal, fast time to debug, and execution speed.

Cadence has the widest portfolio of tools to help companies meet verification challenges, including:

Incisive Enterprise Manager, which provides hierarchical verification technology for multiple IPs, interconnects, hardware/software, and plans to improve management productivity and visibility;

The recently launched vManager solution, a verification planning and management solution enabled by client/server technology to address the growing verification closure challenge driven by increasing design size and complexity;

Incisive Enterprise Verifier, which delivers dual power from tightly integrated formal analysis and simulation engines; and

Incisive Enterprise Simulator, which provides the most comprehensive IEEE language support with unique capabilities supporting the intent, abstraction, and convergence needed to speed silicon realization.

Are companies building an infrastructure that gets you business advantage? Yes, companies are realizing the problems. It is these companies that are the winners in managing today’s design and verification challenges, he said.

Good verification
When should good verification start?

Kalia noted: “Good verification should start right at the time of the high level architecture of the design. A verification strategy should be defined at that time, and an overall verification plan should be written at that time. This is where a comprehensive solution like Incisive vManager can help companies manage their verification challenges by ensuring that SoC developers have a consistent methodology for design quality enhancements.”

Are folks mistaking by looking at tools and not at the verification process itself?

He addded that right tools and methodology are needed to resolve today’s verification challenges. Users need to work on defining verification methodologies and at the same time look at the tools that are needed to achieve verification goals.

Verification planning
Finally, there’s verification planning! What should be the ‘right’ verification path?

Verification planning needs to include:

* A formal definition of verification goals;
* A formal definition of coverage goals at all levels – starting with code coverage all the way to functional coverage;
* Required resources – human and compute;
* Verification timelines;
* All the verification tools to be used for verification; and
* Minimum and maximum signoff criteria.

3D remains central theme for Applied in 2014!


Om Nalamasu

Om Nalamasu

Following a host of forecasts for 2014, it is now the turn of Applied Materials with its forecast for the year. First, I asked Om Nalamasu, senior VP, CTO, Applied Materials regarding the outlook for the global semicon industry in 2014.

Semicon outlook 2014
He said that Gartner expects the semiconductor industry to grow in mid-single digits to over $330 billion in 2014.

“In our industry – the semiconductor wafer fab equipment sector – we are at the beginning of major technology transitions, driven by FinFET and 3D NAND, and based a wide range of analyst projections, wafer fab equipment investment is expected to be up 10-20 percent in 2014. We expect to see a year-over-year increase in foundry, NAND, and DRAM investment, with logic and other spending flat to down.”

Five trends for 2014
Next, what are the top five trends likely to rule the industry in 2014?

Nalamasu said that the key trends continuing to drive technology in 2014 and beyond include 3D transistors, 3D NAND, and 3D packaging. 3D remains a central theme. In logic, foundries will ramp to 20nm production and begin early transition stages to3D finFET transistors.

With respect to 3D NAND, some products will be commercially available, but most memory manufacturers plan to crossover from planar NAND to vertical NAND starting this year. In wafer level packaging, critical mechanical and electrical characterization work is bringing the manufacturability of 3D-integrated stacked chips closer to reality.

These device architecture inflections require significant advances in precision materials engineering. This spans such critical steps as precision film deposition, precision materials removal, materials modification and interface engineering. Smaller features and atomic-level thin films also make interface engineering and process integration more critical than ever.

Driving technology innovations are mobility applications which need high performance, low power semiconductors. Smartphones, smart watches, tablets and wearable gadgets continue to propel industry growth. Our customers are engaged in a fierce battle for mobility leadership as they race to be the first to market with new products that improve the performance, battery-life, form-factor and user experience of mobile devices.

How is the global semiconductor industry managing the move to the sub 20nm era?

He said that extensive R&D work is underway to move the industry into the sub-20nm realm. For the 1x nodes, more complex architectures and structures as well as new higher performance materials will be required.

Some specific areas where changes and technology innovations are needed include new hard mask and channel materials, selective material deposition and removal, patterning, inspection, and advanced interface engineering. For the memory space, different memory architectures like MRAM are being explored.

FinFETs in 20nm!
By the way, have FinFETs gone to 20nm? Are those looking for power reduction now benefiting?

FinFET transistors are in production in the most advanced 2x designs by a leading IDM, while the foundries are in limited R&D production. In addition to the disruptive 3D architecture, finFET transistors in corporate new materials such as high-k metal gate (HKMG) that help to drastically reduce power leakage.

Based on public statements, HKMG FinFET designs are expected to deliver more than a 20 percent improvement in speed and a 30 percent reduction in power consumption compared to28nm devices. These are significant advantages for mobile applications.

Status of 3D ICs
Finally, what’s the status with 3D ICs? How is Applied helping with true 3D stacking integration?

Nalamasu replied that vertically stacked 3D ICs are expected to enter into production first for niche applications. This is due primarily to the higher cost associated with building 3D wafer-level-packaged (WLP) devices. While such applications are limited today, Applied Materials expects greater utilization and demand to grow in the future.

Applied is an industry leader in WLP, having spear-headed the industry’s development of through silicon via (TSV) technology. Applied offers a suite of systems that enable customers to implement a variety of packaging techniques, from bumping to redistribution layer (RDL) to TSV. Because of work in this area, Applied is strongly positioned to support customers as they begin to adopt this technology.

To manufacture a robust integrated 3D stack, several fundamental innovations are needed. These include improving defect density and developing new materials such as low warpage laminates and less hygroscopic dielectrics.

Another essential requirement is supporting finer copper line/spacing. Important considerations here are maintaining good adhesion while watching out for corrosion. Finally, for creating the necessary smaller vias, the industry needs high quality laser etching to replace mechanical drilling techniques.

India’s evolving importance to future of fabless: Dr. Wally Rhines

February 3, 2014 2 comments

Dr. Wally RhinesIf I correctly remember, sometime in Oct. 2008, S. Janakiraman, then chairman of the India Semiconductor Association, had proclaimed that despite not having fabs, the ‘fabless India” had been shining brightly! Later, in August 2011, I had written an article on whether India was keen on going the fabless way! Today, at the IESA Vision Summit in Bangalore, Dr, Wally Rhines repeated nearly the same lines!

While the number of new fabless startups has declined substantially in the West during the past decade, they are growing in India, said Dr. Walden C. Rhines, chairman and CEO, during his presentation “Next Steps for the Indian Semiconductor Industry” at the ongoing IESA Vision Summit 2014.

India has key capabilities to stimulate growth of semiconductor companies, which include design services companies, design engineering expertise and innovation, returning entrepreneurs, and educational system. Direct interaction with equipment/systems companies will complete the product development process.

Off the top 50 semicon companies in 2012, 13 are fabless and four are foundries. The global fabless IC market is likely to grow 29 percent in 2013. The fabless IC revenue also continues to grow, reaching about $78.1 billion in 2013.  The fabless revenue is highly concentrated with the top 10 companies likely to account for 64 percent revenue in 2013. As of 2012, the GSA estimates that there aere 1,011 fabless companies.

The semiconductor IP (SIP) market has also been growing and is likely to reach $4,774 million by 2020, growing at a CAGR of 10 percent. The top 10 SIP companies account for 87 percent of the global revenue. Tape-outs at advanced nodes have been growing. However, there are still large large opportunities in older technologies.

IoT will transform industry
It is expected that the Internet of Things (IoT) will transform the semiconductor industry. It is said that in the next 10 years, as many as 100 billion objects could be tied together to form a “central nervous system” for the planet and support highly intelligent web-based systems. As of 2013, 1 trillion devices are connected to the network.

Product differentiation alone makes switching analog/mixed-signal suppliers difficult. Change in strategy toward differentiation gradually raises GPM percentage.

India’s evolving importance to future of fabless
Now, India ranks among the top five semiconductor design locations worldwide. US leads with 507, China with 472, Taiwan with 256, Israel with 150, and India with 120. Some prominent Indian companies are Ineda, Saankhya Labs, Orca Systems and Signal Chip (all fabless) and DXCorr and SilabTech (all SIP).

India is already a leading source of SIP, accounting for 5.3 percent, globally, after USA 43 percent and China 17.3 percent, respectively. It now seems that India has been evolving from design services to fabless powerhouse. India has built a foundation for a fabless future. It now has worldwide leadership with the most influential design teams in the world.

Presently, there are 1,031 MNC R&D centers in India. Next, 18 of the top 20 US semiconductor companies have design centers in India. And, 20 European corporations set up engineering R&D centers in India last year. India also has the richest pool of creative engineering resources and educational institutions in the world. The experience level of Indian engineers has been increasing, but it is still a young and creative workforce. There is also a growing pool of angel investors in India, and also in the West, with strong connections to India.

So, what are the key ingredients to generate a thriving infrastructure? It is involvement and expertise with end equipment. Superb product definition requires the elimination of functional barriers. He gave some examples of foreign “flagged” Indian companies that produced early successes. When users and tool developers work in close proximity, “out-of-the-Box” architectural innovations revolutionize design verification.

%d bloggers like this: