Search Results

Keyword: ‘india’

India needs to learn from Intersolar North America show!


Intersolar North America successfully concluded its seventh annual show in the heart of the United States’ largest solar market, California. More than 17,000 visitors from 74 countries visited 530 exhibitors.

Abundant solar radiation in India!

Abundant solar radiation in India!

The show had the latest innovations in the photovoltaic, energy storage, balance of systems, mounting and tracking systems, and solar heating and cooling market sectors.

It just shows how the USA has evolved as a leading market for solar PV over the years. One could feel USA creeping up on China! Which brings me to the other significant news.

Recently, there was news regarding the USA-China solar dispute. USA has won huge anti-dumping tariffs in the US-China solar panel trade case. A preliminary decision by the US Department of Commerce has imposed significant tariffs on Chinese solar modules in the anti-dumping portion of the case.

The decision has also closed SolarWorld’s “loophole,” which is said to have allowed Chinese module manufacturers to use Taiwanese cells in their modules, circumventing US trade duties.

Will this affect the Chinese PV module suppliers? Perhaps, not that much. Why so? China itself has a very huge domestic market for solar PV. They can continue to do well in China itself. It can also sell solar PV modules in India, as well, besides other regions in the Asia Pacific.

That brings me back to Intersolar North America 2014. Why was there such a low presence of Indian companies? The exhibitor list for the show reads only two — Lanco Solar Pvt Ltd and Vikram Solar Pvt Ltd. Where are the others?

If one looks at the Ministry for New and Renewable Energy (MNRE) website, there is a notification stating that a National Solar Mission (NSM) is being implemented to give a boost to solar power generation in the country. It has a long-term goal of adding 20,000 MWp of grid-connected solar power by 2022, to be achieved in three phases (first phase up to 2012-13, second phase from 2013 to 2017 and the third phase from 2017 to 2022).

Well, the MNRE has also put up a release stating complaints received about the non-function of the systems installed by channel partners. Without getting into details, why can’t Indian suppliers get to the ground and work up solidly? Some of the complaints are actually not even so serious. System not working. Channel partner not attending complaint! And, plant not working due to inverter (PPS) burnt down. These should be attended to quickly, unless, there is some monetary or other issue, which, at least, I am not aware of!

The CNA Corp.s Energy, Water, & Climate division released two studies earlier this week, which found that cost-effective options that power plants can use to cut water use can also help plants reduce CO2 emissions.

The first report, Capturing Synergies Between Water Conservation and Carbon Dioxide Emissions in the Power Sector, focuses on strategy recommendations based on analyses of water use and CO2 emissions in four case studies, which are detailed in the second report, A Clash of Competing Necessities: Water Adequacy and Electric Reliability in China, India, France, and Texas.

CNA’s Energy, Water, & Climate division released two studies, which found that cost-effective options that power plants can use to cut water use can also help plants reduce CO2 emissions.

“It’s a very important issue,” said lead study author Paul Faeth, director of Energy, Water, & Climate at CNA. “Water used to cool power plants is the largest source of water withdrawals in the United States and France, and a large source in China and India.”

“The recommendations in these reports can serve as a starting point for leaders in these countries, and for leaders around the world, to take the steps needed to ensure the reliability of current generating plants and begin planning for how to meet future demands for electric power.”

India needs to learn from the Intersolar North America show. It also needs to look carefully at CNA’s reports. It is always great and good work that attracts global attention. India has all of the requred capabilities to do so!

Renesas aims to increase its MCU share in India


Sunil Dhar

Sunil Dhar

Renesas Electronics recently opened its India subsidiary in Bangalore. Elaborating, Sunil Dhar, managing director of Renesas Electronics India said: “We are glad to announce the opening of Renesas Electronics India Pvt Ltd, a wholly-owned subsidiary of Renesas Electronics Singapore Pte Ltd., located in Bangalore.

“Since 2010, Renesas has been providing technical product support to its customers here via branch offices in Bangalore, Delhi and Mumbai. As part of its expansion plan, Renesas will turn our said branches into a full subsidiary.

“The branch office setup served us well when the organization was small and its role was limited. In order to expand further in terms of opening more offices in India for close customer support, and to be able to provide wider services to customers in India like reference software, hardware, reference solutions which would be developed in India, it would require us to have a permanent establishment here.

“Through this new company, we aim to expand business by providing the best solution offerings and technical support as well as a regional systems solution development expertise to the Indian market.”

How does the India R&D team play a role in global innovation and where do you see Renesas Electronics in India five years from now?

He said that over 50 percent of the Renesas India team is application development or field engineers armed with knowledge of embedded hardware and software development and support.

In order to expand the footprint in Indian markets, Renesas plans to build up a strong application engineering team. India Application engineering team will engage with the Renesas headquarters, regional offices to develop new products and solutions dedicated for emerging countries, including India.

The application engineering team and the future solution centre aim to survey the market for solution needs, prepare India designed solutions fitting the price points and specifications points as required in the Indian market. Along with the customers, the team also intends to collaborate with the design houses to create innovative solutions addressing upcoming needs of the market. Our goal is to become the most trusted semiconductor solution provider in India.

What are the India-centric solutions that would be developed from the India Application Engineering team?

Dhar added that the needs of emerging markets are usually different in both specifications as well as price points. By providing dedicated local support via the new company, and with a focus on industrial and automotive applications for two- and four-wheelers, Renesas aims to increase its MCU share in India and expand its solution offerings with rich lineup of kit solutions (MCU + SoC + power devices) and platform reference boards (boards with complete ecosystem including devices and software) to provide customers a shorter time-to-market.

The team will initially focus on automotive and particularly, two-wheeler solutions. The intention is to expand the scope of the application engineering team’s activity to industrial and consumer appliances in near term.

What is the overall India employee strength? How are the investment plans looking up?

Dhar said: “In order to expand our footprint in Indian markets, we will double our headcount in near term.  Currently, we are just under 30 staff and over 50 percent of us are application development or field engineers armed with the knowledge of embedded hardware and software development and support. Upon setting up the organization in Sales and Marketing roles in the initial days, we also have plans to announce the setting up of a Solutions Centre in India to develop reference application solutions to enable our customers to use our devices.

“We are intending to invest in lab, infrastructure setup and expansion of activities in the next three to five years. Additionally, we are also considering investing towards 3rd party and IDH for enlarged business  engagement.”

Trends driving automotive market in India
Regarding trends driving the automotive market in India, Dhar said that Renesas focusses on three business segments – automotive, industrial and home, OA and ICT. Renesas holds more than 40 percent global market share for automotive MCU business. Our target applications for automotive segment are automotive control and automotive infotainment and network.

Renesas has dedication applications solutions for integrated cockpit through system on chip, R-car ecosystem collaboration solution for e-mobility and automotive analog and power devices for driving, steering and braking.

As semiconductor technologies evolved, it has enabled automakers to integrate multiple applications on a single chip significantly reducing the board area; thus optimizing performance and adding new features for comfort, safety and infotainment. Power technologies have brought energy efficiency, limiting power consumption in vehicles. Advancements in process technologies will continue to drive the auto industry in the coming years.

Renesas, for instance, developed the industry’s first 28nm flash memory IP for MCUs and the first semiconductor supplier to move from 40nm to 28nm process technology.

“Trends driving auto industry in India and globally are more of less the same. However, for India market, we see a specific demand for two-wheeler solutions and that is our target in coming years,” he concluded.

Lastly, I must take the opportunity to thank Ms Shweta Dhadiwal-Baid and Ms Sharmita Mandal for making this happen! ;)

Categories: Semiconductors

Three things in Indian semicon: Vinay Shenoy


Vinay Shenoy

Vinay Shenoy

There have been a variety of announcements made by the Government of India in the last one year or so. In the pre-90s period, the country showed just 1 percent GDP growth rate. It was adverse to FDI and had a regulated market. All of this led to deregulation under the late PM, PV Narasimha Rao.

The Indian government was averse to foreign investment, which was opened up around 1994. Since then, we have seen 6-8 percent growth, said Vinay Shenoy, MD, Infineon Technologies (India). He was delivering the keynote at the UVM 1.2 day, being held in Bangalore, India.

Around 1997, India signed the ITA-1 with the WTO. Lot of electronic items had their import duty reduced to zero. It effectively destroyed the electronics manufacturing industry in India. We were now reduced to being a user of screwdriver technology. In 1985, the National Computer Policy, and in 1986, the National Software Policy, were drafted. The government of India believed that there existed some opportunities. The STPI was also created, as well as 100 percent EoUs. So far, we have been very successful in services, but have a huge deficit on manufacturing.

We made an attempt to kick off semicon manufacturing in 2007, but that didn’t take off for several reasons. It was later revived in 2011-12. Under the latest national policy of electronics, there have been a couple announcements – one, setting up of two semicon fabs in India. The capital grant – nearly 25-27 percent — is being given by the government. It has provided a financial incentive – of about $2 billion.

Two, electronics manufacturing per se, unless it is completely an EoU, the semicon industry will find it difficult to survive. There is the M-SIPS package that offers 25 percent capital grant to a wide range of industries.

Three, we have granted some incentives for manufacturing. But, how are you going to sell? The government has also proposed ‘Made in India’, where, 30 percent of the products will be used within India. These will largely be in the government procurements, so that the BoM should be at least 30 percent from India. The preferential market policy applies to all segments, except defense.

Skill development is also key. The government has clearly stated that there should be innovation-led manufacturing. The government also wants to develop PhDs in selected domains. It intends to provide better lab facilities, better professors, etc. Also, young professors seeking to expand, can seek funding from the government.

TSMC promotes small IP companies. Similarly, it should be done in India. For semicon, these two fabs in India will likely come up in two-three years time. “Look at how you can partner with these fabs. Your interest in the semicon industry will be highly critical. The concern of the industry has been the stability of the tax regime. The government of India has assured 10 years of stable tax regime. The returns will come in 10-15 years,” added Shenoy.

The government has set up electronics manufacturing clusters (EMC). These will make it easy for helping companies to set up within the EMC. The NSDC is tying up with universities in bringing skill-sets. The industry is also defining what skills will be required. The government is funding PhDs, to pursue specialization.

India’s evolving importance to future of fabless: Dr. Wally Rhines

February 3, 2014 2 comments

Dr. Wally RhinesIf I correctly remember, sometime in Oct. 2008, S. Janakiraman, then chairman of the India Semiconductor Association, had proclaimed that despite not having fabs, the ‘fabless India” had been shining brightly! Later, in August 2011, I had written an article on whether India was keen on going the fabless way! Today, at the IESA Vision Summit in Bangalore, Dr, Wally Rhines repeated nearly the same lines!

While the number of new fabless startups has declined substantially in the West during the past decade, they are growing in India, said Dr. Walden C. Rhines, chairman and CEO, during his presentation “Next Steps for the Indian Semiconductor Industry” at the ongoing IESA Vision Summit 2014.

India has key capabilities to stimulate growth of semiconductor companies, which include design services companies, design engineering expertise and innovation, returning entrepreneurs, and educational system. Direct interaction with equipment/systems companies will complete the product development process.

Off the top 50 semicon companies in 2012, 13 are fabless and four are foundries. The global fabless IC market is likely to grow 29 percent in 2013. The fabless IC revenue also continues to grow, reaching about $78.1 billion in 2013.  The fabless revenue is highly concentrated with the top 10 companies likely to account for 64 percent revenue in 2013. As of 2012, the GSA estimates that there aere 1,011 fabless companies.

The semiconductor IP (SIP) market has also been growing and is likely to reach $4,774 million by 2020, growing at a CAGR of 10 percent. The top 10 SIP companies account for 87 percent of the global revenue. Tape-outs at advanced nodes have been growing. However, there are still large large opportunities in older technologies.

IoT will transform industry
It is expected that the Internet of Things (IoT) will transform the semiconductor industry. It is said that in the next 10 years, as many as 100 billion objects could be tied together to form a “central nervous system” for the planet and support highly intelligent web-based systems. As of 2013, 1 trillion devices are connected to the network.

Product differentiation alone makes switching analog/mixed-signal suppliers difficult. Change in strategy toward differentiation gradually raises GPM percentage.

India’s evolving importance to future of fabless
Now, India ranks among the top five semiconductor design locations worldwide. US leads with 507, China with 472, Taiwan with 256, Israel with 150, and India with 120. Some prominent Indian companies are Ineda, Saankhya Labs, Orca Systems and Signal Chip (all fabless) and DXCorr and SilabTech (all SIP).

India is already a leading source of SIP, accounting for 5.3 percent, globally, after USA 43 percent and China 17.3 percent, respectively. It now seems that India has been evolving from design services to fabless powerhouse. India has built a foundation for a fabless future. It now has worldwide leadership with the most influential design teams in the world.

Presently, there are 1,031 MNC R&D centers in India. Next, 18 of the top 20 US semiconductor companies have design centers in India. And, 20 European corporations set up engineering R&D centers in India last year. India also has the richest pool of creative engineering resources and educational institutions in the world. The experience level of Indian engineers has been increasing, but it is still a young and creative workforce. There is also a growing pool of angel investors in India, and also in the West, with strong connections to India.

So, what are the key ingredients to generate a thriving infrastructure? It is involvement and expertise with end equipment. Superb product definition requires the elimination of functional barriers. He gave some examples of foreign “flagged” Indian companies that produced early successes. When users and tool developers work in close proximity, “out-of-the-Box” architectural innovations revolutionize design verification.

What should India do to boost electronics manufacturing?


The IESA 2014 Vision Summit opened today in Bangalore, with the one key question: what does India need to do to boost electronics manufacturing? Here are some words of wisdom from some industry icons.

SR Patil

SR Patil

SR Patil, Minister for IT-BT, Science and Technology, Karnataka, remarked that at present, we are not able to find any significant place in global hardware arena. We are heavily dependent on other countries to import electronic goods – that may be computers, chips, mobile phones and the list goes on.

“If I am right, our import bill of electronic goods has surpassed $30 billion previous year. It is calculated to be $42 billion by next year if we don’t initiate sincere measures to boost the domestic manufacturing. I don’t have any hesitation to say that we must learn lessons from small countries such as South Korea, Taiwan and Israel on this count.”

The main objective of the Karnataka ESDM policy is to make the state a preferred destination for ESDM investment, and emerge as the ESDM leader in the country.

Patil said: “We aim to generate around 2.4 lakh jobs and 20 percent of the country’s total ESDM export target of $80 billion by the year 2020. We are preparing a ground for setting up of ESDM clusters – both that of Brownfield and Greenfield.”

As many eight ESDM companies have registered with the IT-BT Department recently and obviously they are entitled for various incentives and concessions under the new policy.

Dr. Om Nalamasu, senior VP and CTO, Applied Materials Inc. added that establishing a high-value manufacturing industry as semiconductor chip fabrication will have transformative effect on the overall electronics industry in India.

This will have a very strong multiplier effect that will result in major strides forward in the value generated from all sectors within the semiconductor ecosystem – one of the biggest being the growth of high-tech and high value-add employment opportunities this will generate in the country. The historic significance of this approval will be felt for many years to come. Manufacturing in India will soon witness a new frontier.

A strong manufacturing base is critical for high-growth economies. There are successful examples in South East Asia where advanced manufacturing has resulted in strong GDP multipliers. In India, there’s a strong electronics market opportunity, driven by telecom, IT, consumer and industrial electronics; 65 percent of these electronic products are imported today. The disposable income of the growing middle class in India and China will continue to drive electronics market growth.

The point is: all of these words have been spoken over and over again! The first semicon policy was announced in 2007-08, followed by a revised policy in 2010-11. In between, the first Karnataka semicon policy was announced. However, there have been very, very few, or no takers! Even the first semicon fab policy announcement went unaccounted for! Later, last year, there was another announcement regarding two fabs that are said to be coming up!

When will India deliver? One hopes that happens soon!

Indian electronics scenario still dull: Leaptech


Suresh Nair

Suresh Nair

Leaptech Corp. was established to help the electronics and semiconductor manufacturing companies in India achieve global standards by adopting the latest technologies available worldwide. It represents the world’s leading companies offering automation equipment for PCB assembly, semiconductor, automotive and final assembly automation.

Suresh Nair, director, said that Leaptech is helping the electronics, semiconductor and automotive manufacturing companies in India by bringing in world class technologies from across the globe in assembly automation, the technologies, which are state-of-the-art.

“We provide both pre-sales and post-sales support to all the systems and solutions that we offer, complete post-sales support includes installation, commissioning, training, production support and process support through our factory trained engineers strategically located in Delhi, Mumbai, Bangalore and Chennai.”

Leaptech provides audit and reconditioning services to enable customers improve productivity and uptime on their existing automated through hole and SMT assembly machines. Nair added: “We do provide audit and reconditioning services to customers where the machines were sold/supported by us. We may not be able to handle machines sold by other suppliers since that will be a breach of contract with out own principals.”

As for the training on operational and maintenance aspects of through hole insertion and SMT machines, Leaptech also provide complete training on machines for operation, periodical maintenance, trouble shooting as well as preventive maintenance.

Leaptech offers consultancy services for new electronics setup as well as for new projects in the existing facility, which includes all detailing as well as knowhow on the process of assembly/production. our expert team is upto date with all latest trends in this industry.

Connected mobile devices
It will be interesting to get Leaptech opinon regarding connected mobile devices. Nair said that connected mobile devices would grow for sure in the immediate future. Growth in the long term may depend on the contents of this segment and how interesting it is to the users.

With regard to automotive electronics driving energy efficiency, he added that Leaptech mostly sells automation equipment and the scope for these equipment toward energy efficiency for automotive sector is limited.

Indian electronics scenario in 2014 and beyond
According to Nair, the Indian electronics scenario is still dull and this may continue in the next year as well. Things could improve once the new manufacturing policy announced by the government starts seeing some investments.

To boost electronics manufacturing in India, it requires a simple action plan: make all finished electronics products imports more expensive and give incentives to local manufacturing.

However, he felt that nanotech will not emerge as a disruption in India, at least, not in the near future. It may make some impact in the long run.

India poses huge opportunity for DLP: TI


Kent Novak

Kent Novak

Texas Instruments has been a leader in DLP or digital light processing, a type of projector technology that uses a digital micromirror device. Kent Novak, senior VP, DLP Products, Texas Instruments (TI) mentioned that DLP became the no. 1 supplier of MEMS technology in 2004.

The DLP pico projectors business started in 2009. Now, pico is going into gaming systems, etc. In 2011, it went into the cinema industry. In India, out of 10,000 screens, close to 7,000 are now digital. In 2012, new DLP development kit was launched allowing developers to embed the DLP chip into non-traditional applications in new markets. In 2013, TI started working on DLP automotive chips.

He said: “DLP is an array of millions of digital micromirrors. We ship around 45 million devices. We see India as a growth opportunity for cimemas. In DLP front projection business, we have 60 percent share in India. Only 5 percent of Indian classrooms have projectors, making room for growth.”

In low power pico projection, TI has 95 percent market share in India for standalone pico projection. A phone with pico projection was launched in India with iBall at 35 lumen.

DLP technology is available in India in:
Industrial: Machine vision can improve quality control in the Indian manufacturing sector.
Medical: Intelligent illumination systems for cost effective blood analysis.
Safety: Cost effective, accurate chemical analysis of food and industrial.
Automotive: Infotainment and safety solution being qualified.

DLP in automotive displays has several applications, such as wide field of view head up display (HUD) – app available by 2016, free shape interactive active console – app available by 2017, and smart headlights. Some other features include:

* High image quality: consistent contrast, brightness over lamp.
* Full, deep, accurate cover over lifetime.
* Easily enlarges larger display areas.
* High power efficiency.
* DLP technology automatically reduces reflection.

New market opportunities
There are said to be several new opportunities for DLP. These are in:

Industrial: Machine vision, spectroscopy, interactive display, 3D printing, intelligent lighting, digital light exposure.
Infotainment: Mobile phones, tablets, camcorders, laptops, mobile projection, ultra slim TVs.
Gaming: Dual console gaming, interactive gaming, near eye display.
Digital signage: Interactive surface, storefront interactive, retail engagement.
Automotive: Head up display, interactive display, intelligent lighting.
Medical: Spectroscopy, 3D printing, intelligent lighting.

TI has DLP LightCrafter family of evaluation modules. It enables faster development cycles for end equipment requiring smalll form factor, lower cost and intelligent, high-speed pattern display. The DLP LightCrafter 4500 features the 0.45 WXGA chipset. The DLP chip can enable new and innovative intelligent display apps. If your solution uses, programs or senses light, DLP could be a fit.
DLP catalog offers programmable, ultra-high speed pattern. “DLP is light source agnostic. We use whatever’s most efficient for brightness,” he added.

Spark’s back on Indian electronics!!


Well, well, well! Post the announcements by the Government of India last week of two 300mm fabs in India, there have been a spate of announcements again, this week! Here’s what they are!

Yesterday evening, the Indian Cabinet Committee on Economic Affairs has approved setting up of Information Technology Investment Region (ITIR) near Hyderabad.

The Phase I of this project will be from 2013 to 2018 and Phase II will be from 2018 to 2038. The Government of Andhra Pradesh has delineated an area of 202 sq. kms. for the proposed ITIR in three clusters/ agglomerations viz.:

(i) Cyberabad Development Area and its surroundings,
(ii) Hyderabad Airport Development area and Maheshwaram in the south of Hyderabad, and
(iii) Uppal and Pocharam areas in eastern Hyderabad. The ITIR will be implemented in two phases.

Next, the Government of India finalized the setting up of a ‘Ultra-Mega Green Solar Power Project’ in Rajasthan in the SSL (Sambhar Salts Ltd, a subsidiary of Hindustan Salts Ltd – a Central Public Sector Enterprise under the Department of Heavy Industry, Ministry of Heavy Industries & Public Enterprises) area close to Sambhar Lake, about 75 kms from Jaipur.

Further, India was recognized as ‘Authorizing Nation’ under the international Common Criteria Recognition Arrangement (CCRA) to test and certify electronics and IT products with respect to cyber security. India has become the 17th nation to earn this recognition.

Then again, the ‘HTML 5.0 Tour in India’ has now reached Hyderabad.

Also, India has offered to help Cuba develop its renewable energy resources. This has been conveyed to Marino Murillo, vice president of the Republic of Cuba at Havana, by Dr. Farooq Abdullah, Minister of New and Renewable Energy, during his trip to Cuba.

All of this is really brilliant stuff!

At least, I have never seen or heard about so much activity happening, especially in the electronics and solar PV sectors. One sincerely hopes that all of these initiatives will allow India to come to the forefront of the global electronics industry.

The spark seems to be coming back to the India electronics industry, after a very, very long wait! It is hoped that this stays on!!

Great, India’s having fabs! But, is the tech choice right?

September 13, 2013 2 comments

G450C

G450C

The government of India recently approved the setting up of two semiconductor wafer fabrication facilities in the country. It is expected to provide a major boost to the Indian electronics system design and manufacturing (ESDM) ecosystem. A look at the two proposals:

Jaiprakash Associates, along with IBM (USA) and Tower Jazz (Israel). The outlay of the proposed fab is about Rs. 26,300 crore for establishing the fab facility of 40,000 wafer starts per month of 300mm size, using advanced CMOS technology. Technology nodes proposed are 90nm, 65nm and 45nm nodes in phase I, 28nm node in phase II with the option of establishing a 22nm node in phase III. The proposed location is Greater Noida.

Hindustan Semiconductor Manufacturing Corp. (HSMC) along with ST Microelectronics (France/Italy) and Silterra (Malaysia). The outlay of the proposed fab is about Rs. 25,250 crore for the fab facility of 40,000 wafer starts per month of 300mm size, using advanced CMOS technology. Technology nodes proposed are 90nm, 65nm and 45nm nodes in phase I and 45nm, 28nm and 22nm nodes in phase II. The proposed location is Prantij, near Gandhinagar, Gujarat.

Now, this is excellent news for everyone interested in the Indian semiconductor industry.

One look at the numbers above tell me – NONE OF THESE are going to be 450mm fabs! Indeed, both will be 300mm fabs! After waiting for such a long time to even get passed by the Union Cabinet, are these 300mm fabs going to be enough for India? Is the technology choice even right for the upcoming wafer fabs in India? Let’s examine!

As you can probably see, both the projects have placed 22nm right at the very last phase! That’s very interesting!

Intel just showcased its Xeon processor E5-2600 v2 product family a few days back. I distinctly remember Intel’s Narendra Bhandari showing off the 22nm wafer sometime last week during a product launch!

For discussion’s sake, let’s say, a fab in India comes up by say, early 2015. Let’s assume that Phase 1 takes a full year. Which means, Phase 2, where 22nm node would be used, shall only be touched in 2016 or even beyond! Isn’t it? Where will the rest of the global industry be by then?

You are probably aware of the Global 450 Consortium or G450C, which has Intel, IBM, Samsung, GlobalFoundries and TSMC among its members.  What is the consortium currently doing? It is a 450mm wafer and equipment development program, which is leveraging on the industry and government investments to demonstrate 450mm process capabilities at the CNSE’s Albany Nanotech Complex. CNSE, also a consortium member, is the SUNY’s College of Nanoscale Science and Engineering!

So, what does all of this tell me?

One, these upcoming fabs in India will probably produce low- to mid-range chips, and some high-end ones at a later stage. Well, two, this does raise a question or two about India’s competitive advantage in the wafer fab space!  Three, there is lot of material on 450mm fabs, and some of that is available right here, on this blog! Have the Indian semiconductor industry folks paid enough attention to all that? I really have no idea!

Four, only the newer 300mm fabs built with higher ceilings and stronger floors will be able to be upgraded to 450mm, as presented by The Information Network’s Dr. Robert Castellano at the Semicon West 2013. Five, what are the likely alternative markets for 200mm and 300mm fabs? These are said to be MEMs and TSV, LEDs and solar PV. Alright, stop!

Perhaps, these product lines will be good for India and serve well, for now, but not for long!

Now, India to have two semicon fabs!

September 12, 2013 10 comments

Finally, the Government of India has approved the establishment of a semiconductor wafer fab (fab) in India!

This is indeed heart warming news, especially for the Indian semiconductor and electronics industries. For years, India has been trying to get at least one fab up and running! Now, the dream is about to be realized!

Speaking from China, an ecstatic BV Naidu, chairman and managing director, Sagitaur Ventures, co-chairman, Karnataka ICT Grioup and former president, India Semiconductor Association (ISA) said: “This is really a fantastic news for the Indian semiconductor industry. The government has been trying to achieve this since 2008. The announcement goes as a strong signal to global community.”

Pradip Dutta, corporate VP and MD, Synopsys, said: “It is a momentous decision for the semiconductor industry and by extension the electronics industry for our country. It should lead to a level playing field for the local manufacturers and mitigate some of the disability factors. I sincerely hope the industry reacts positively to this news and this leads to a vibrant local IC design industry.”

Raghu Panicker, sales director, Mentor Graphics India, added: “For years, India has been trying to get at least one fab up and running! This has indeed been a long awaited news. Finally its not ONE, but TWO. The fabs would fuel the growth of semicon start up’s and electronics industry as a whole. It is a big step forward for the overall ESDM inititaive by IESA and government.”

Jaypee Group, IBM and Tower form one consortium. HSMC, STMicroelectronics and a Malaysian company are said to be part of the other consortium.

%d bloggers like this: