Search Results

Keyword: ‘industry’

Semicon industry needs to keep delivering value: Anil Gupta

April 3, 2014 Comments off

Anil Gupta

Anil Gupta

In 2013, the global semiconductor industry had touched $306 billion or so. Sales had doubled from $100 billion to $200 billion in six years — from 1994 to 2000. It was enterprise sales that was driving this. It has taken 14 years to move past $300 billion, said Anil Gupta, managing director, Applied Micro Circuits India Pvt Ltd, at the UVM 1.2 day.

This time, consumption of semiconductors is not only around enterprise, but social networks as well. Out of the $306 billion, logic was approximately $86 billion, memory was $67 billion, and micro was $58 billion. We, as consumers, are starting to play a huge role.

However, the number of large players seem to be shrinking. Mid-size firms, like Applied Micro, are said to be struggling. Technology is playing an interesting role. There is a very significant investment in FinFETs. It may only get difficult for all of us. Irrespective, all of this is a huge barrier to the mid- to small-companies. Acquisitions are probably the only route, unless you are in software.

In India, we have been worried for a while, whether the situation will be a passing phase. We definitely will have a role to play. From an expertise perspective, thanks to our background, we have been a poor nation. For us, the job is the primary goal. We need to think: how do we deliver value? We have to try and keep creating value for as long as possible.

As more and more devices actually happen, many other things are also happening. An example for devices is power. We still have a fair number of years ahead where there will be opportunities to deliver value.

What’s happening between hardware and software? The latter is in demand. Clearly, there is a trend to make the hardware a commodity. However, hardware s not going away! Therefore, the opportunity for us to deliver value is huge.

Taking the tools to make something, is critical. UVM tools are critical. But, somewhere along the way, we seem to stop at that. We definitely need to add value. UVM’s aim is to make things re-usable.

Don’t loose your focus while doing verification. Think about the block, the subsystem and the top. You need to and will discover and realize how valuable it is to find a bug, before the tape out of the chip.

Global semicon industry trends in 2014: Analog Devices


Sam Fuller

Sam Fuller

I recently met Sam Fuller, CTO, Analog Devices, and had an interesting conversation. First, I asked him about the state of the global semicon industry in 2013.

Industry in 2013
He said: “Due to the uncertainties in the global economy in the last couple of years, the state of the global semiconductor industry has been quite modest growth. Because of the modest growth, there has been a buildup in demand. As the global economies begin to be more robust going forward, we expect to see more growth.”

Industry in 2014?
How does Analog Devices see the industry going forward in 2014? What are the five key trends?

He added: “I would talk about the trends more from an eco-system and applications perspective. Increased capability on a single chip: Given all the advances to Moore’s law, the capability of a chip has increased considerably in all dimensions and not just performance, be it the horsepower we see in today’s smartphones or the miniaturization and power consumption of wearable gadgets that were on show this year at CES.

“In Analog Devices’ case, as we are focused on high performance signal processing, we can put more of the entire signal chain on a single die. For our customers, the challenge is to provide their customers a more capable product which means a more complex product, but with a simpler interface.

“A classic example is our AD9361 chip, which is a single chip wideband radio transceiver for Software Defined Radio (SDR). It is a very capable ASSP (Application Specific Standard Products) as well as RF front end with a wide operating frequency of 70 MHz to 6 GHz.

“This chip, coupled with an all-purpose FPGA, can build a very flexible SDR operating across different radio protocols, wide frequency range and bandwidth requirements all controlled via software configuration. It finds a number of applications in wireless communication infrastructure, small cell Base stations as well as a whole range of custom radios in the industrial and aerospace businesses.”

Now, let’s see the trends for 2014!

More collaboration with customers: There is a greater emphasis on understanding customers’ end applications to provide a complete signal chain, all in a System on a Chip (SoC) or a System in a package (SiP). The relationship with our customers is changing as we move more towards ASSPs focused with few lead customers for target markets and target applications. While this has already been ongoing in the consumer industry with PCs and laptops, customers in other vertical markets like healthcare, automotive and industrial are and will collaborate more with semiconductor companies like Analog Devices to innovate at a solutions level.

More complete products: We have evolved from delivering just the silicon at a component level to delivering more complete products with more advanced packaging for various 3D chips or multi-die within a package. Our solutions now have typically much more software that makes it easier to configure or program the chips. It is a solution that is a combination of more advanced silicon, advanced packaging and more appropriate software.

With providing the complete solution, the products are more application specific and hence, the need for more collaboration with customers. For example, there may be one focused on Software Defined Radio, one for motor control, and one for vital signs monitoring for consumer health that we have launched recently.

We need it to be generic enough that multiple customers can use it, but it needs to be as tailored as possible to the customers’ needs for specific market segments. While because of the volume and standardization, availability of complete reference designs in the consumer world has been the norm, other market segments are demanding more complete products not-withstanding the huge variation in protocols and applications.

Truly global industry: The semiconductor and electronics industry has become truly global, so multiple design sites around the globe collaborate to create products. For example for Analog Devices, one of our premier design sites is our Bangalore product design center where we quite literally developed our most complex and capable chips. At the same time our customers are also global.

We see large multinational companies like GE, Honeywell, Cisco, Juniper, ABB, Schneider and many of our top strategic customers globally doing substantial system design work in Bangalore along with a multitude of India design houses. Our fastest growing region is in Asia, but we have substantial engagement with customers in North America and Europe. And our competition is also global, which means that the industry is ever moving faster as the competition is global.

Smarter design tools: The final trend worth talking about is the need for smarter design tools.  As our products and our customers’ products become more complex and capable, there have to be rapidly developing design tools, for us to design them.

This cannot be done by brute force but by designing smarter and better tools. There is a lot of innovation that goes on in developing better tool suites. There is also ever more capable software that caters to a market moving from 100s of transistors to literally billions of transistors for an application.

Top five trends likely to rule global semicon industry in 2014

January 24, 2014 Comments off

Rich Goldman

Rich Goldman

What are the top five trends likely to rule the semicon industry in 2014 and why? Rich Goldman, VP, corporate marketing and strategic alliances, Synopsys, had this to say.

FinFETs
FinFETs will be a huge trend through 2014 and beyond. Semiconductor companies will certainly keep us well informed as they progress through FinFET tapeouts and ultimately deliver production FinFET processes.

They will tout the power and speed advantages that their FinFET processes deliver for their customers, and those semiconductor companies early to market with FinFETs will press their advantage by driving and announcing aggressive FinFET roadmaps.

IP and subsystems
As devices grow more complex, integrating third-party IP has become mainstream. Designers recognize as a matter of course that today’s complex designs benefit greatly from integrating third-party IP in such areas as microprocessors and specialized I/Os.

The trend for re-use is beginning to expand upwards to systems of integrated, tested IP so that designers no longer need to redesign well-understood systems, such as memory, audio and sensor systems.

Internet of Things/sensors
Everybody is talking about the Internet of Things for good reason. It is happening, and 2014 will be a year of huge growth for connected things. Sensors will emerge as a big enabler of the Internet of Things, as they connect our real world to computation.

Beyond the mobile juggernaut, new devices such as Google’s (formerly Nest’s) thermostat and smoke detector will enter the market, allowing us to observe and control our surrounding environment remotely.

The mobile phone will continue to subsume and disrupt markets, such as cameras, fitness devices, satellite navigation systems and even flashlights, enabled by sensors such as touch, capacitive pattern, gyroscopic, accelerometers, compasses, altimeters, light, CO, ionization etc. Semiconductor companies positioned to serve the Internet of Things with sensor integration will do well.

Systems companies bringing IC design in-house
Large and successful systems companies wanting to differentiate their solutions are bringing IC specification and/or design in house. Previously, these companies were focused primarily on systems and solutions design and development.

Driven by a belief that they can design the best ICs for their specific needs, today’s large and successful companies such as Google, Microsoft and others are leading this trend, aided by IP reuse.

Advanced designs at both emerging and established process nodes  
While leading-edge semiconductor companies drive forward on emerging process nodes such as 20nm, others are finding success by focusing on established nodes (28nm and above) that deliver required performance at reduced risk. Thus, challenging designs will emerge at both ends of the spectrum.

Part II of this discussion will look at FinFETs below 20nm and 3D ICs.

Can 2014 be a major year for global semicon industry?


The year 2014 is expected to be a major year for the global semiconductor industry. The industry will and continue to innovate!

Apparently, there are huge expectations from certain segments such as the so-called Internet of Things (IoT) and wearable electronics. There will likely be focus on the connected car. Executives have been stating there could be third parties writing apps that can help cars. Intel expects that technology will be inspiring optimism for healthcare in future. As per a survey, 57 percent of people believe traditional hospitals will be obsolete in the future.

Some other entries from 2013 include Qualcomm, who introduced the Snapdragon 410 chipset with integrated 4G LTE world mode for high-volume smartphones. STMicroelectronics joined ARM mbed project that will enable developers to create smart products with ARM-based industry-leading STM32 microcontrollers and accelerate the Internet of Things.

A look at the industry itself is interesting! The World Semiconductor Trade Statistics Inc. (WSTS) is forecasting the global semiconductor market to be $304 billion in 2013, up 4.4 percent from 2012. The market is expected to recover throughout 2013, driven mainly by double digit growth of Memory product category. By region, all regions except Japan will grow from 2012. Japan market is forecasted to decline from 2012 in US dollar basis due to steep Japanese Yen depreciation compared to 2012.

WSTS estimates that the worldwide semiconductor market is predicted to grow further in 2014 and 2015. According to WSTS, the global semiconductor market is forecasted to be up 4.1 percent to $317 billion in 2014, surpassing historical high of $300 billion registered in 2011. For 2015, it is forecasted to be $328 billion, up 3.4 percent.

All product categories and regions are forecasted to grow positively in each year, with the assumption of macro economy recovery throughout the forecast period. By end market, wireless and automotive are expected to grow faster than total market, while consumer and computer are assumed to remain stagnant.

Now, all of this remains to be seen!

Earlier, while speaking with Dr. Wally Rhines of Mentor, and Jaswinder Ahuja of Cadence, both emphasized the industry’s move to 14/16nm. Xilinx estimates that 28nm will have a very long life. It also shipped the 20nm device in early Nov. 2013.

In a 2013 survey, carried out by KPMG, applications markets identified as most important by at least 55 percent of the respondents were: Mobile technology – 69 percent; Consumer – 66 percent; Computing – 63 percent; Alternative/Renewal Energy – 63 percent; Industrial – 62 percent; Automotive – 60 percent; Medical – 55 percent; Wireline Communications – 55 percent.

Do understand that there is always a line between hope and forecasts, and what the end result actually turns out to be! In the meantime, all of us continue to live with the hope that the global semiconductor will carry on flourishing in the years to come. As Brian Fuller, Cadence, says, ‘the future’s in our hands; let’s not blow it!’

How’s global semicon industry performing in sub-20nm era?

December 22, 2013 Comments off

Early this month, I caught up with Jaswnder Ahuja, corporate VP and MD, Cadence Desiign Systems India. With the global semiconductor industry having entered the sub-20nm era, there are a lot of things happening, and Cadence is sure to be present.

Performance in sub-2onm era
First, let’s see how’s the global semiconductor industry performing after entering the sub-20nm era.

Jaswinder Ahuja

Jaswinder Ahuja

Ahuja replied: “Increased demand for faster, smaller, low-power chips continues to drive the geometry shrink as one of the ways to manage the low-power, higher performance goals in smaller form factors—in other words, PPA is driving the move to advanced node design.

“At Cadence, we are seeing a lot of interest in the wireless space, which includes smartphones, tablets, and consumer devices. In this market, you must support different standards, the device must be really fast, it must have Internet access, and all this must be done at lower power so the that it does not drain the battery. We’re also seeing interest for advanced nodes in other segments such as computing and graphics processors.”

When speaking of advanced nodes, let’s also try and find out what Cadence is doing in helping achieve 10X faster power integrity analysis and signoff.

Cadence Voltus IC power integrity Solution is a full-chip, cell-level power signoff tool that provides accurate, fast, and high-capacity analysis and optimization technologies to designers for debugging, verifying, and fixing IC chip power consumption, IR drop, and electromigration (EM) constraints and violations.

The Voltus solution includes innovative technologies such as massively parallel execution, hierarchical architecture, and physically aware power grid analysis and optimization. Beneficial as a standalone power signoff tool, Voltus IC Power Integrity Solution delivers even more significant productivity gains when used in a highly integrated flow with other key Cadence products, providing the industry’s fastest design closure technology.

Developed with advanced algorithms and a new power integrity analysis engine with massively parallel execution, Voltus IC Power Integrity solution:
* Performs 10X faster than other solutions on the market.
* Supports very large designs—up to one billion instances—with its hierarchical architecture.
* Delivers SPICE-level accuracy.
* Enhances physical implementation quality via physically aware power integrity optimization.

Supported by major foundries and intellectual property (IP) providers, Voltus IC Power Integrity Solution has been validated and certified on advanced nodes processes such as 16nm FinFET and included in reference design flows such as for 3D-IC technology. Backed by Cadence’s rigorous quality control and product release procedures, the Voltus solution delivers best-in-class signoff quality on accuracy and stability for all process nodes and design technologies.

FinFETs to 20nm – are folks benefiting?
It is common news that FinFETs have gone to 20nm and perhaps, lower. Therefore, are those folks looking for power reduction now benefiting?

Ahuja replied that FinFETs allow semiconductor and systems companies to continue to develop commercially viable chips for the mobile devices that are dominating the consumer market. FinFETs enable new generations of high-density, high-performance, and ultra-low-power systems on chip (SoCs) for future smart phones, tablets, and other advanced mobile devices. Anyone who adopts FinFET technology will reap the benefits.

Foundry support for FinFETs will begin at 16nm and 14nm. In April of this year, Cadence announced a collaboration with ARM to implement the industry’s first ARM Cortex-A57 processor on TSMC’s 16nm FinFET manufacturing process. At ARM TechCon 2012, Cadence announced a 14nm test chip tapeout using an ARM Cortex-M0 processor and IBM’s FinFET process technology.
Read more…

Dr. Wally Rhines on global semiconductor industry trends for 2013


It is always a pleasure speaking with Dr. Walden (Wally) C. Rhines, chairman and CEO, Mentor Graphics Corp. I met him on the sidelines of the 13th Global Electronics Summit, held at the Chaminade Resort & Spa, Santa Cruz, USA.

Status of global EDA industry

Dr. Wally Rhines.

Dr. Wally Rhines.

First, I asked Dr. Rhines how the EDA industry was doing. Dr. Rhines said: “The global EDA industry has been doing pretty well. The results have been pretty good for 2012. In general, the EDA industry tends to follow the semiconductor R&D by at least 18 months.”

For the record, the electronic design automation (EDA) industry revenue increased 4.6 percent for Q4 2012 to $1,779.1 million, compared to $1,700.1 million in Q4 2011.

Every region, barring Japan, grew in 2012. The Asia Pacific rim grew the fastest – about 12.5 percent. The Americas was the second fastest region in terms of growth at 7.4 percent, and Europe grew at 6.8 percent. However, Japan decreased by 3 percent in 2012.

In 2012, the segments that have grown the fastest within the EDA industry include PCB design and IP, respectively. The front-end CAE (computer aided engineering) group grew faster than the backend CAE. By product category, CAE grew 9.8 percent. The overall growth for license and maintenance was 7 percent. Among the CAE areas, design entry grew 36 percent and emulation 24 percent, respectively.

DFM also grew 28 percent last year. Overall, PCB grew 7.6 percent, while PCB analysis was 25 percent. IP grew 12.6 percent, while the verification IP grew 60 percent. Formal verification and power analysis grew 16 percent each, respectively. “That’s actually a little faster than how semiconductor R&D is growing,” added Dr. Rhines.

Status of global semicon industry
On the fortunes of the global semiconductor industry. Dr. Rhines said: “The global semiconductor industry grew very slowly in 2012. Year 2013 should be better. Revenue was actually consolidated by a lot of consolidations in the wireless industry.”

According to him, smartphones should see further growth. “There are big investments in capacities in the 28nm segment. Folks will likely redesign their products over the next few years,” he said. “A lot of firms are waiting for FinFET to go to 20nm. People who need it for power reduction should benefit.”

“A lot of people are concerned about Japan. We believe that Japan can recover due to the Yen,” he added.
Read more…

Five-year outlook for solar PV industry!


According to Finlay Coville, VP and team leader, NPD Solarbuzz, full year end market PV demand during 2012 reached 29.05 GW. The demand is forecast to increase to 31 GW in 2013. China is expected to replace Germany as the leading market for the first time. The global market is likely to have a CAGR exceeding 15 percent, highlighting long term confidence in global PV adoption levels.

Supply vs. demand overview in 2012
The upstream c-Si module/thin-film panel suppliers produced 30.1 GW of new product in 2012. Combined with inventory levels through the value chain, this provided 31 GW of panels to the downstream channels. 29 GW was used for market demand, while 2 GW went to the downstream inventory.

Demand overview 2013
Year 2013 is shaping up as a 31 GW demand year under the most likely scenario. Over 50 percent of the end market demand is projected to come from China, Germany and North America (USA and Canada). 2013 will be a transition year for the emerging PV territories. Both the Middle East and Africa and Emerging Asia will likely reach 1 GW.

Source: NPD Solarbuzz, USA.

Source: NPD Solarbuzz, USA.

PV demand in 2012 accounted for approximately 30 percent of all PV installed globally. The industry growth in 2012 is positive, but set against a backdrop of an industry that had been accustomed to year-on-year growth often exceeding 100 percent. The industry is forecast to return to double digit growth.

PV scenario forecasting continies to show divergent outcomes in 2017. A high market demand scenario assumes a strong economic environment and aggressive PV policies by way of direct incentives and lower regulatory hurdles.

Five-year cumulative demand by geography
Cumulatively, global PV demand is forecast to exceed 230 GW over the five year period to 2017. China is forecast to install 51 GW accounting for over 20 percent. Europe will continue to offer strong regional PV market. North America and Japan will provide over 61 GW of demand. Emerging markets are projected to create over 25 GW of PV demand, more than 10 percent of the cumulative total to 2017.

By application segment, the ground-mount segment will remain the single largest segment over the five years. Residential and non-residential (commercial) segments will continue to be characterized by specific end-user requirements, different supply channels and routes-to-market for upstream suppliers.

The PV industry was configured to supply over 45 GW in 2012. The industry is likely to be in an over-capacity mode in 2013, with balanced supply/demand levels restored from 2015. Market share aspirations remain a key driver for PV manufacturers. During 2013 and 2014, the capacity taken offline is likely to be more than compensated for by newly ramped capacity.

With multi-domain c-Si module production, most panels had efficiencies in the 13-16 percent band during 2012. High efficiency concepts are not likely to strongly influence the module efficiency landscape during 2013 or 2014. If high efficiency cell types gain traction, the share of modules with efficiencies above 16 percent will increase.

In 2012, a wide range of efficiencies were produced, but with levels that do not compete with c-Si modules for space-constrained applications. The range of panels available in the 12-14 percent band is likely to grow strongly from 2015 as leading suppliers benefit from process improvements. Panels below 10 percent efficiency will become obsolete.

Despite end market growth expected, revenues available to each part of the value-chain will see strong declines Y/Y in 2013. This is due to the ASPs declining at a faster rate than the end-market demand growth, within a strong overcapacity environment. Revenues are also unlikely to recover for each value-chain segment until the 2016-2017 period.

What’s with prices?
2012 was the fourth year in a row that c-Si module prices declined and was the largest Y/Y decline. As capacity throughout the PV chain has increased, the oversupply has put further pressure on the ASPs. Declines in pricing occurred further upstream, at the poly, wafer and cell segments.

Tracking SAM revenues fron selling modules into downstream channels is becoming less important to the PV industry. as a number of module suppliers take on EPC and project developer roles.

PV equipment spending
As for PV equipment spending, the most likely forecast sees capacity being added by a select gtoup of tier 1 c-Si makers during 2014. The next cyclic downturn is forecast for 2016-2017. This assumes excess capacity is added in the next upturn.

If we look at the current scope of trade disputes, there are five major markets — EU, USA, India, Canada, China — investigating products being imported, with China featuring in most cases. Most disputes are being pursued by the internal bodies, but several have been referred to the WTO for review. A growing number of emerging PV regions already have domestic content incentives.

Summary
PV demand was 29 GW in 2012, and 2013 is forecast to tip 31 GW. 230 GW of new PV demand is forecast between 2013-2017, adding to the 100 GW at the end of 2012. Eighty percent of PV demand in 2013-2017 will come from the top 10 end markets.

10 key trends for global PV industry

February 11, 2013 3 comments

Finlay Colville, vice president, NPD Solarbuzz, USA, recently presented the 10 key trends for the PV industry. According to him, the 10 key trends are:

1. PV demand growth. The industry has been characterized by strong growth rates of 25 percent to >100 percent Y/Y for the past decade. Now, the industry needs to plan for growth at more modest levels.

2. Globalization of PV demand. The emerging regions emerged for PV demand in 2012.

3. China end-market demand in 2013. China is forecast to account for approximately 25 percent global demand in 2013. The emerging demand is confined to a select group of countries across the three emerging regions.

4. Capacity imbalance reset. The nameplate capacity levels at the 60-GW level are often cited. However, the the PV industry currently has an ‘effective’ capacity of 41-42 GW. Therefore, demand needs to exceed 40 GW for proper reset.

Top module suppliers.

Top module suppliers.

5. Competitive shakeout. The top-10 module suppliers by MW for 2012 only comprised 50 percent of the year shipments. Also, a similar pattern is seen for c-Si cell production. We can expect another two years of shakeout on the supply side.

6. Cost and price rationalization. Every segment of the supply side is subject to price/cost pressure: from poly to BoS supply. Even reducing the silicon/nonsilicon costs of modules to 53c/W level by the end of 2013 may still result in negative gross margins.

7. Supply and demand rationalization. The poly suppliers have been operating at reduced utilization since 2H’12.

8. Evolution of PV technology roadmaps. Strong marketshare gains from standard c-Si multi ingot/wafers. The end-markets are driving module efficiencies and power ratings. The alternative growth methods have not gained traction and are being phased out.

9. Capital expenditure cyclic patterns. The PV process equipment suppliers have been impacted severely by overcapacity and overinvestments of 2010 and 2011. There is a strong chance that 2014 will end up as low as 2013. Also, technology-buy cycles don’t exist as yet in the PV industry.

10. Domestic protectionism counter measures. The effects of trade wars may yet have a profound effect on the PV industry into 2014. There will be direct effect of global overinvestment into domestic manufacturing. The other countries have an impact, but China and Europe decisions are key.

In summary, the PV industry is a 30-GW end-market today, and is forecast to grow to the 40-GW level in 2015. Europe demand is declining, but greater number of countries/territories expected to provide new PV demand. Demand in China during 2013 is essential for local suppliers.

The PV industry is capable of producing 12-15 GW per quarter. Supply and demand need a 40-GW+ market to balance. The shakeout phase is proceeding slowly, and will continue for the next two years. Reducing costs are not yet keeping up with price declines. ASP and ISP stabilization period is needed badly.

The end-market demand has become dependent on low ISPs. Also, multi c-Si based modules are dominating the industry. PV equipment suppliers are unlikely to see meaningful new order intake until 2014 or beyond. Finally, trade wars and domestic protectionism measures are crucially dependent on the EU and China decisions in 2013.

Will global semicon industry see growth in 2013?

February 2, 2013 14 comments

How will the global semiconductor industry perform in 2013? After a contrasting spell of predictions for 2012, I see no change in 2013! So, what’s the answer to the million-dollar question posed as my headline? :)

Global electronics industry.

Global electronics industry.

After a disappointing and challenging 2012, global semiconductor executives believe that the worst is nearly behind them, and they are making investments to position their companies for a sustained, broad-based, multi-year recovery in 2013, as per a KPMG global semiconductor survey.

On Feb. 3, the Semiconductor Industry Association (SIA) announced that worldwide semiconductor sales for 2012 reached $291.6 billion, the industry’s third-highest yearly total, ever but a decrease of 2.7 percent from the record total of $299.5 billion set in 2011. Total sales for the year narrowly beat expectations from the World Semiconductor Trade Statistics (WSTS) organization’s industry forecast.

The World Semiconductor Trade Statistics (WSTS) estimated that the global semiconductor market in 2012 will be $290 billion, down 3.2 percent from 2011, followed by a recovery of positive 4.5 percent growth to $303 billion in 2013.

The worldwide semiconductor revenue is projected to total $311 billion in 2013, a 4.5 percent increase from 2012 revenue, according to Gartner Inc. The worldwide semiconductor revenue totaled $298 billion in 2012, a 3 percent decline from 2011 revenue of $307 billion, according to preliminary results by Gartner.

The outlook for the global semiconductor industry in 2013 will likely be 7.9 percent, according to Future Horizons. It means, the industry will likely grow to $315.4 billion in 2013. The Cowan LRA foreasting model put out the following sales and year-on-year sales growth numbers for 2012 and 2013: $292.992 billion (-2.2 percent) and $309.244 billion (+5.5 percent), respectively.

Databeans expects 2013 will see a rebound, with the semiconductor industry growing by 7 percent from 2012 totals to reach $313.04 billion. IDC forecasted that the worldwide semiconductor revenues will grow 4.9 percent and reach $319 billion in 2013.

IHS iSuppli claimed that the semiconductor silicon revenue will close 2012 at $303 billion, down 2.3 percent from $310 billion in 2011. The projected decline comes in contrast to the 1.3 percent gain made last year.

IC Insights forecasted 6 percent IC unit growth for 2013 based on expectations of global GDP to rise to 3.2 percent. According to IC

Source: VLSI Research, USA.

Source: VLSI Research, USA.

Insights, in 2017, China is expected to represent 38 percent of the worldwide IC market, up from 23 percent, 10 years earlier in 2007. Does this mean the USA and Europe are loosing their sheen?

The global semiconductor industry may record only 1.5 percent growth In 2013, as per The Infornation Network. There is, however, the possibility for a snap-back in revenues for 2013, irrespective of macroeconomic factors, such as what occurred in 2010.

Over the next three years, industry analysts estimate the global industry will grow approximately 6 percent 2013-2016 CAGR, according to Somshubro Pal Choudhury, managing director, Analog Devices India Pvt. Ltd.

Late 2012, I was speaking with Dr. Wally Rhines, chairman and CEO, Mentor Graphics. He said: “After almost no growth in 2012, most of the analysts are expecting improvement in semiconductor market growth in the coming year. Currently, the analyst forecasts for the semiconductor industry in 2013 range from 4.2 percent on the low side to 16.6 percent on the high side, with most firms coming in between 6 percent and 10 percent. The average of forecasts among the major semiconductor analyst firms is approximately 8.2 percent.”

WSTS also anticipates the world market to grow 5.2 percent to $319 billion in 2014, with healthy mid single digit growth across most of geographical regions and semiconductor product categories, supported by the healthier economy of the world.

Lastly, Forbes said that 2013 will be a turning point for the global semiconductor market.
Read more…

Global semiconductor industry to grow 7.9 percent in 2013

January 28, 2013 1 comment

Malcolm Penn

Malcolm Penn

According to Malcolm Penn, CEO, Future Horizons, the outlook for the global semiconductor industry in 2013 is likely to be +7.9 percent. This means, the global semiconductor industry will likely grow to $315.4 billion in 2013.

Should this happen, it would be significant, given that this is the third year in a row that the market failed to break the $300 billion barrier! The global semiconductor clocked around $292.3 billion in 2012, as against $299.5 billion In 2011.

I asked Malcolm Penn the rationale behind this. He said, the rationale is exactly the same as that for 2012. There is said to be no change to last year’s fundamental market analyses. That’s not all! There are likely to be exactly the same (economic) downside risks as well.

The unit demand, capacity and ASPs are all ‘positively aligned’. Here, it is advised that one should never underestimate the economy’s capacity to derail the chip market. Even the downside forecast has been to break the $300 billion barrier.

The global chip industry growth is driven by four factors. These are economy, which is on hold due to complete loss of confidence, unit demand, which is back on the 10 percent per annum treadmill (inventory gone), fab capacity, which is currently tight (very), especially at the leading technology edge, and ASPs, which are structurally following the usual ups and downs.

There is a very safe, long-term bet, provided companies execute properly. As it is, most firms don’t, as they are too pre-occupied with chasing short-term targets.

Finally, if the year 2013 does show a recovery, the global semiconductor market will likely go ballistic in 2014.

%d bloggers like this: