Archive

Author Archive

Diverse requirements for IoT evolving: Charlie Huang

August 20, 2014 Comments off

According to Charlie Huang, senior VP, Worldwide Field Operations and System & Verification Group, Cadence, today, we are talking about tremendous data growth. Mobile has been driving the growth of semiconductors, besides medical, industrial, consumer and automotive electronics as well. Trends are also driving disruptive opportunities — from driving growth in China to growth in India. He was delivering the keynote on day two at the CDNLive 2014 in Bangalore, India.

"We can innovate to build things that are yet to be imagined. Greater things are yet to come for the Indian semicon design opportunities.

"Today, the iPad has become a system of systems. Now, everyone is waiting for the next big thing. People are also talking about the IoT. Everything will get revolutionized by the newer SoCs. Diverse requirements for IoT have been evolving. There are development challenges from all directions. More functions also means that more IP cores need to be integrated and verified. The IP cores per SoC is likely to be 123 in 14nm, from 108 in 20/22nm. The complexity is just unimaginable!

"Eighty percent of SoC development costs come from software, verification and validation. We should now look at innovating software design with SoC design.

Cadence has invested substantially in IP. It enables system design enablement from end product down to chip level. System-level design with high level synthesis is used to shorten the development cycle and get better quality of results (QoR).

Categories: Semiconductors

IoT gathering pace as revolution: Guru Ganesan

August 17, 2014 Comments off

IoT gathering pace as revolution: Guru Ganesan

By 2020, there will be over 8 billion people on our planet. This will also bring tremendous innovations and challenges. ARM has been connecting intelligence at every level, said Guru Ganesan, president and MD, ARM India.

He was delivering the guest keynote at the recently held CDNLive 2014 event in Bangalore, India.

Newer apps are helping connect with the world. As per Gartner, $27 billion worth apps were downloaded in 2013. By 2020, this is estimated to rise to $80 billion.

According to Ganesan, consumer trends are driving innovation in embedded apps, including rich user interface (UI). ARM is also at the heart of wearable technologies, for example, Smart Glasses from Google. Some examples from India include Lechal from Ducere Technologies, GOQ Pi remote fitness companion, Fin+ navigation and device control gesture based device from RHLVision, and Smarty Ring that brings instant smartphone alerts to your fingers from Chennai.

So, what are the key requirements for wearables? These are video/image, audio, display, software, OS, connectivity and battery life! In 2013, over 1 billion smartphones were shipped. Further, mobile data 12 times over between now and 2018.

In medical electronics, besides humans, it has extended to keeping the cattle healthy and have intelligent agriculture with OnFarm, by using sensors. IoT as a revolution is gathering pace. As per a survey conducted by ARM, 95 percent of the users expect to be using IoT over the next three years. Common standards are being developed for interoperability. Similarly, mobility and connectivity are also happening in automotives.

Now, let’s see the development challenges for high-end embedded. Embedded applications today integrate more functions. Consequently, design and verification challenges continue to grow. Further, lot of smart devices are now generating lot of data. The question is: how are we using that data?

Ganesan added that by 2020, there will be new challenges in transportation, healthcare, energy and education. Once devices start communicating with each other, we are likely to see the evolution of a smart infrastructure.

Categories: Semiconductors

Innovating in system of systems: Lip Bu-Tan

August 17, 2014 Comments off

Lip-Bu Tan, president and CEO, Cadence Design Systems Inc.

Lip-Bu Tan, president and CEO, Cadence Design Systems Inc.

There have been several innovations of innovations happening in the global technology industry. The IoT, mobility, cloud computing, etc., are creating opportunities for the system of systems, according to Lip-Bu Tan, president and CEO, Cadence Design Systems Inc.

Tan was delivering the main keynote. at the recently held CDNLive 2014 in Bangalore, India,

Some of the trends driving the global semiconductor market growth in the end markets include automotives at $24 billion, computers at $76 billion, industrial electronics at $14,1 billion, medical electronics at $12.5 billion, and mobile phones at $100 billion. In India, especially, a lot of fabless companies are said to be coming up.

The tablet is a system of systems. It has communications, navigation, recording and photography, etc. Even the automotive vehicle is a convincing example. Next, there is the IoT. There are said to be diverse needs for the IoT.

There are said to be several challenges for the system of systems. Some of these are more IP and software requirements, and more needs for low power and mixed signal. System design enablement requires system integration, packaging and board, etc.

Cadence has a comprehensive SoC IP solution. The mixed signal verification solution ensures functionality, reliability and performance. Cadence also introduced the Voltus-Fi custom power integrity solution in Shanghai the week before. Its Quantus QRC extraction solution gives up to 5X performance.

Next, the Jasper acquisition expands the Cadence development suite. Cadence also provides the FPGA-based prototyping with Palladium flow for software development.

Tan concluded that new technologies always require closer collaboration — from IP through manufacturing. Cadence is here to help designers innovate — from systems to silicon.

Categories: Semiconductors

Cadence Quantus solution meets 16nm FinFET challenges


Cadence Design Systems Inc. recently announced the Quantus QRC extraction solution had been certified for TSMC 16nm FinFET.

So, what’s the uniqueness about the Cadence Quantus QRC extraction solution?

Quantus

Quantus

KT Moore, senior group director – Product Marketing, Digital and Signoff Group, Cadence Design Systems, said: “There are several parasitic challenges that are associated with advanced node designs — especially FinFET – and it’s not just about tighter geometries and new design rules. We can bucket these challenges into two main categories: increasing complexity and modeling challenges.

“The number of process corners is exploding, and for FinFET devices specifically, there is an explosion in the parasitic coupling capacitances and resistances. This increases the design complexity and sizes. The netlist is getting bigger and bigger, and as a result, there is an increase in extraction runtimes for SoC designs and post-layout simulation and characterization runtimes for custom/analog designs.

“Our customers consistently tell us that, for advanced nodes, and especially for FinFET designs, while their extraction runtimes and time-to-signoff is increasing, their actual time-to-market is shrinking and putting an enormous amount of pressure on designers to deliver on-time tapeout. In order to address these market pressures, we have employed the massively parallel technology that was first introduced in our Tempus Timing Signoff Solution and Voltus IC Power Integrity Solution to our next-generation extraction tool, Quantus QRC Extraction Solution.

“Quantus QRC Extraction Solution enables us to deliver up to 5X better performance than competing solutions and allows scalability of up to 100s of CPUs and machines.”

Support for FinFET features
How is Quantus providing significant enhancements to support FinFET features?

Parasitic extraction is at the forefront with the introduction of any new technology node. For FinFET designs, it’s a bit more challenging due to the introduction of non-planar FinFET devices. There are more layers to be handled, more RC effects that need to be modeled and an introduction of local interconnects. There are also secondary and third order manufacturing effects that need to modeled, and all these new features have to be modeled with precise accuracy.

Performance and turnaround times are absolutely important, but if you can’t provide accuracy for these devices — especially in correlation to the foundry golden data — designers would have to over-margin their designs and leave performance on the table.

Best-in-class accuracy
How can Cadence claim that it has the ‘tightest correlation to foundry golden data at TSMC vs. competing solutions’? And, why 16nm only?

According to Moore, the foundry partner, TSMC, asserts that Quantus QRC Extraction Solution provides best-in-class accuracy, which was referenced in the recent press announcement:

“Cadence Quantus QRC Extraction Solution successfully passed TSMC’s rigorous parasitic extraction certification requirements to achieve best-in-class accuracy against the foundry golden data for FinFET technology.”

FinFET structures present unique challenges since they are non-planar devices as opposed to its CMOS predecessor, which is a planar device. We partnered with TSMC from the very beginning to address the modeling challenges, and we’ve seen many complex shapes and structures over the year that we’ve modeled accurately.

“We’re not surprised that TSMC has recognized our best-in-class accuracy because we’re the leader in providing extraction solutions for RF designs. Cadence Quantus QRC Extraction Solution has been certified for TSMC 16nm FinFET, however, it’s important to note that we’ve been certified for all other technology nodes and our QRC techfiles are available to our customers from TSMC today.”

India needs to learn from Intersolar North America show!

August 1, 2014 Comments off

Intersolar North America successfully concluded its seventh annual show in the heart of the United States’ largest solar market, California. More than 17,000 visitors from 74 countries visited 530 exhibitors.

Abundant solar radiation in India!

Abundant solar radiation in India!

The show had the latest innovations in the photovoltaic, energy storage, balance of systems, mounting and tracking systems, and solar heating and cooling market sectors.

It just shows how the USA has evolved as a leading market for solar PV over the years. One could feel USA creeping up on China! Which brings me to the other significant news.

Recently, there was news regarding the USA-China solar dispute. USA has won huge anti-dumping tariffs in the US-China solar panel trade case. A preliminary decision by the US Department of Commerce has imposed significant tariffs on Chinese solar modules in the anti-dumping portion of the case.

The decision has also closed SolarWorld’s “loophole,” which is said to have allowed Chinese module manufacturers to use Taiwanese cells in their modules, circumventing US trade duties.

Will this affect the Chinese PV module suppliers? Perhaps, not that much. Why so? China itself has a very huge domestic market for solar PV. They can continue to do well in China itself. It can also sell solar PV modules in India, as well, besides other regions in the Asia Pacific.

That brings me back to Intersolar North America 2014. Why was there such a low presence of Indian companies? The exhibitor list for the show reads only two — Lanco Solar Pvt Ltd and Vikram Solar Pvt Ltd. Where are the others?

If one looks at the Ministry for New and Renewable Energy (MNRE) website, there is a notification stating that a National Solar Mission (NSM) is being implemented to give a boost to solar power generation in the country. It has a long-term goal of adding 20,000 MWp of grid-connected solar power by 2022, to be achieved in three phases (first phase up to 2012-13, second phase from 2013 to 2017 and the third phase from 2017 to 2022).

Well, the MNRE has also put up a release stating complaints received about the non-function of the systems installed by channel partners. Without getting into details, why can’t Indian suppliers get to the ground and work up solidly? Some of the complaints are actually not even so serious. System not working. Channel partner not attending complaint! And, plant not working due to inverter (PPS) burnt down. These should be attended to quickly, unless, there is some monetary or other issue, which, at least, I am not aware of!

The CNA Corp.s Energy, Water, & Climate division released two studies earlier this week, which found that cost-effective options that power plants can use to cut water use can also help plants reduce CO2 emissions.

The first report, Capturing Synergies Between Water Conservation and Carbon Dioxide Emissions in the Power Sector, focuses on strategy recommendations based on analyses of water use and CO2 emissions in four case studies, which are detailed in the second report, A Clash of Competing Necessities: Water Adequacy and Electric Reliability in China, India, France, and Texas.

CNA’s Energy, Water, & Climate division released two studies, which found that cost-effective options that power plants can use to cut water use can also help plants reduce CO2 emissions.

“It’s a very important issue,” said lead study author Paul Faeth, director of Energy, Water, & Climate at CNA. “Water used to cool power plants is the largest source of water withdrawals in the United States and France, and a large source in China and India.”

“The recommendations in these reports can serve as a starting point for leaders in these countries, and for leaders around the world, to take the steps needed to ensure the reliability of current generating plants and begin planning for how to meet future demands for electric power.”

India needs to learn from the Intersolar North America show. It also needs to look carefully at CNA’s reports. It is always great and good work that attracts global attention. India has all of the requred capabilities to do so!

SEMI materials outlook: Semicon West 2014


Source: SEMI, USA.

Source: SEMI, USA.

At the recently held Semicon West 2014, Daniel P. Tracy, senior director, Industry Research and Statistics, SEMI, presented on SEMI Materials Outlook. He estimated that semiconductor materials will see unit growth of 6 percent or more. There may be low revenue growth in a large number of segments due to the pricing pressures and change in material.

For semiconductor eequipment, he estimated ~20 percent growth this year, following two years of spending decline. It is currently estimated at ~11 percent spending growth in 2015.

Overall, the year to date estimate is positive growth vs. same period 2013, for units and materials shipments, and for equipment billings.

For equipment outlook, it is pointing to ~18 percent growth in equipment for 2014. Total equipment orders are up ~17 percent year-to-date.

For wafer fab materials outlook, the silicon area monthly shipments are at an all-time high for the moment. Lithography process chemicals saw -7 percent sales decline in 2013. The 2014 outlook is downward pressure on ASPs for some chemicals. 193nm resists are approaching $600 million. ARC has been growing 5-7 percent, respectively.

For packaging materials, the Flip Chip growth drivers are a flip chip growth of ~25 percent from 2012 to 2017 in units. There are trends toward copper pillar and micro bumps for TSV. Future flip chip growth in wireless products are driven by form factor and performance. BB and AP processors are also moving to flip chip.

There has been growth in WLP shipments. Major applications for WLP are driven by mobile products such as smartphones and tablets. It should grow at a CAGR of ~11 percent in units (2012-2017).

Solder balls were $280 million market in 2013. Shipments of lead-free solder balls continues to increase. Underfillls were $208 million in 2013. It includes underfills for flip chip and packages. The increased use of underfills for CSPs and WLPs are likely to pass the drop test in high-end mobile devices.

Wafer-level dielectrics were $94 million market in 2013. Materials and structures are likely to enhance board-level reliability performance.

Die-attach materials has over a dozen suppliers. Hitachi Chemical and Henkel account for major share of total die attach market. New players are continuing to emerge in China and Korea. Stacked-die CSP package applications have been increasing. Industry acceptance of film (flow)-over-wire (FOW) and dicing die attach film (DDF) technologies are also happening.

 

Semicon West 2014: SEMI World Fab forecast report

July 14, 2014 Comments off

Fabs

Fabs

Christian Gregor Dieseldorff, senior analyst, Industry Research & Statistics  Group at SEMI, presented the SEMI World Fab Forecast at the recently held Semicon West 2014, as part of the SEMI/Gartner Market Symposium on July 7.

Scenarios of fab equipment spending over time has been  20-25 percent in 2014, and 10-15 percent in 2015. At this time, worldwide fab equipment spending is about same in 1H14 vs 2H14. As for fab construction projects, 2013 was a record year with over $9 billion.

New fabs: construction spending (front end cleanrooms only!)
2013: record year with over $9 billion.
2014: -22 percent to -27 percent (~$6.6 billion)
2015: -22 percent to -30 percent (~$5 billion +/-).

Fab equipment spending front end (new and used)
2014: 20 percent to 25 percent (~$35 billion to $36 billion) – if $35 billion, then third largest on record.
2015: 10 percent to 15 percent (~$40 billion) – if $40 billion, then largest in record.

Installed capacity for front end fabs (without discretes)
2014: 2 to 3 percent
2015: 3 to 4 percent
Future outlook beyond 2015: less than 4 percent.

SEMI World Fab Forecast report status and activity outlined that there were 1,148 front end facilities (R&D to HVM) active and future. Also,
* There are 507 companies (R&D to HVM).
* Including 249 LEDs and Opto facilities active and future.
* There are 60 future facilities starting HVM in 2014 or later.
* Major investments (construction projects and/or equipping): 202 facilities in 2014, 189 facilities in 2015.

A slow down of fab closures is expected from 2015 to 2018 for 200mm fabs and 150mm fabs.

%d bloggers like this: