Archive

Archive for the ‘EDA Consortium’ Category

Five recommendations for verification: Dr. Wally Rhines


Dr. Wally RhinesIt seems to be the season of verification. The Universal Verification Methodology (UVM 1.2) is being discussed across conferences. Dennis Brophy, director of Strategic Business Development, Mentor Graphics, says that UVM 1.2 release is imminent, and UVM remains a topic of great interest.

Biggest verification mistakes
Before I add Dennis Brophy’s take on UVM 1.2, I discussed with Dr. Wally Rhines, chairman and CEO, Mentor Graphics Corp. the intricacies regarding verification. First, I asked him regarding the biggest verification mistakes today.

Dr. Rhines said: “The biggest verification mistake made today is poor or incomplete verification planning. This generally results in underestimating the scope of the required verification effort. Furthermore, without proper verification planning, some teams fail to identify which verification technologies and tools are appropriate for their specific design problem.”

Would you agree that many companies STILL do not know how to verify a chip?

Dr. Rhines added: “I would agree that many companies could improve their verification process. But let’s first look at the data. Today, we are seeing that about 1/3 of the industry is able to achieve first silicon success. But what is interesting is that silicon success within our industry has remained constant over the past ten years (that is, the percentage hasn’t become any worse).

“It appears that, while design complexity has increased substantially during this period, the industry is at least keeping up with this added complexity through the adoption of advanced functional verification techniques.

“Many excellent companies view verification strategically (and as an advantage over their competition). These companies have invested in maturing both their verification processes and teams and are quite productive and effective. On the other hand, some companies are struggling to figure out the entire SoC space and its growing complexity and verification challenges.”

How are companies trying to address those?

According to him, the recent Wilson Research Group Functional Verification Study revealed that the industry is maturing its verification processes through the adoption of various advanced functional verification techniques (such as assertion-based verification, constrained-random simulation, coverage-driven techniques, and formal verification).  Complexity is generally forcing these companies to take a hard look at their existing processes and improve them.

Getting business advantage
Are companies realizing this and building an infrastructure that gets you business advantage?

He added that in general, there are many excellent companies out there that view verification strategically and as an advantage over their competition, and they have invested in maturing both their verification processes and teams. On the other hand, some other companies are struggling to figure out the entire SoC space and its growing complexity and verification challenges.

When should good verification start?
When should good verification start — after design; as you are designing and architecting your design environment?

Dr. Rhines noted: “Just like the design team is often involved in discussion during the architecture and micro-architecture planning phase, the verification team should be an integral part of this process. The verification team can help identify architectural aspects of the design that are going to be difficult to verify, which ultimately can impact architectural decisions.”

Are folks mistaken by looking at tools and not at the verification process itself? What can be done to reverse this?

He said: “Tools are important! However, to get the most out of the tools and ensure that the verification solution is an efficient and repeatable process is important. At Mentor Graphics, we recognize the importance of both. That is why we created the Verification Academy, which focuses on developing skills and maturing an organization’s functional verification processes.”

What all needs to get into verification planning as the ‘right’ verification path is fraught with complexities?

Dr. Rhines said: “During verification planning, too many organizations focus first on the “how” aspect of verification versus the “what.” How a team plans to verify its designs is certainly important, but first you must identify exactly what needs to be verified. Otherwise, something is likely to slip through.

“In addition, once you have clearly identified what needs to be verified, it’s an easy task to map the functional verification solutions that will be required to productively accomplish your verification goals. This also identifies what skill sets will need to be developed or acquired to effectively take advantage of the verification solutions that you have identified as necessary for your specific problem.”

How is Mentor addressing this situation?

Mentor Graphics’ Verification Academy was created to help organizations mature their functional verification processes—and verification planning is one of the many excellent courses we offer.

In addition, Mentor Graphics’ Consulting provides customized solutions to technical challenges on real projects with real schedules. By helping customers successfully integrate advanced functional verification technologies and methodologies into their work flows, we help ensure they meet their design and business objectives.

Five recommendations for verification
Finally, I asked him, what would be your top five recommendations for verification?

Here are the five recommendations for verification from Dr. Rhines:

* Ensure your organization has implemented an effective verification planning process.

* Understand which verification solutions and technologies are appropriate (and not appropriate) for various classes of designs.

* Develop or acquire the appropriate skills within your organization to take advantage of the verification solutions that are required for your class of design.

* For the SoC class of designs, don’t underestimate the effort required to verify the hardware/software interactions, and ensure you have the appropriate resources to do so.

* For any verification processes you have adopted, make sure you have appropriate metrics in place to help you identify the effectiveness of your process—and identify opportunities for process improvements in terms of efficiency and productivity.

India’s evolving importance to future of fabless: Dr. Wally Rhines

February 3, 2014 2 comments

Dr. Wally RhinesIf I correctly remember, sometime in Oct. 2008, S. Janakiraman, then chairman of the India Semiconductor Association, had proclaimed that despite not having fabs, the ‘fabless India” had been shining brightly! Later, in August 2011, I had written an article on whether India was keen on going the fabless way! Today, at the IESA Vision Summit in Bangalore, Dr, Wally Rhines repeated nearly the same lines!

While the number of new fabless startups has declined substantially in the West during the past decade, they are growing in India, said Dr. Walden C. Rhines, chairman and CEO, during his presentation “Next Steps for the Indian Semiconductor Industry” at the ongoing IESA Vision Summit 2014.

India has key capabilities to stimulate growth of semiconductor companies, which include design services companies, design engineering expertise and innovation, returning entrepreneurs, and educational system. Direct interaction with equipment/systems companies will complete the product development process.

Off the top 50 semicon companies in 2012, 13 are fabless and four are foundries. The global fabless IC market is likely to grow 29 percent in 2013. The fabless IC revenue also continues to grow, reaching about $78.1 billion in 2013.  The fabless revenue is highly concentrated with the top 10 companies likely to account for 64 percent revenue in 2013. As of 2012, the GSA estimates that there aere 1,011 fabless companies.

The semiconductor IP (SIP) market has also been growing and is likely to reach $4,774 million by 2020, growing at a CAGR of 10 percent. The top 10 SIP companies account for 87 percent of the global revenue. Tape-outs at advanced nodes have been growing. However, there are still large large opportunities in older technologies.

IoT will transform industry
It is expected that the Internet of Things (IoT) will transform the semiconductor industry. It is said that in the next 10 years, as many as 100 billion objects could be tied together to form a “central nervous system” for the planet and support highly intelligent web-based systems. As of 2013, 1 trillion devices are connected to the network.

Product differentiation alone makes switching analog/mixed-signal suppliers difficult. Change in strategy toward differentiation gradually raises GPM percentage.

India’s evolving importance to future of fabless
Now, India ranks among the top five semiconductor design locations worldwide. US leads with 507, China with 472, Taiwan with 256, Israel with 150, and India with 120. Some prominent Indian companies are Ineda, Saankhya Labs, Orca Systems and Signal Chip (all fabless) and DXCorr and SilabTech (all SIP).

India is already a leading source of SIP, accounting for 5.3 percent, globally, after USA 43 percent and China 17.3 percent, respectively. It now seems that India has been evolving from design services to fabless powerhouse. India has built a foundation for a fabless future. It now has worldwide leadership with the most influential design teams in the world.

Presently, there are 1,031 MNC R&D centers in India. Next, 18 of the top 20 US semiconductor companies have design centers in India. And, 20 European corporations set up engineering R&D centers in India last year. India also has the richest pool of creative engineering resources and educational institutions in the world. The experience level of Indian engineers has been increasing, but it is still a young and creative workforce. There is also a growing pool of angel investors in India, and also in the West, with strong connections to India.

So, what are the key ingredients to generate a thriving infrastructure? It is involvement and expertise with end equipment. Superb product definition requires the elimination of functional barriers. He gave some examples of foreign “flagged” Indian companies that produced early successes. When users and tool developers work in close proximity, “out-of-the-Box” architectural innovations revolutionize design verification.

Dr. Wally Rhines: Watch out for 14/16nm technologies in 2014!


Dr. Wally RhinesIt is always a pleasure speaking with Dr. Walden (Wally) C. Rhines, chairman and CEO, Mentor Graphics Corp. The last time I met him was at Santa Cruz, USA, during a global electronics forum in April this year. First, I asked him regarding the outlook for the global semiconductor industry in 2014, as well as the EDA industry.

Outlook for global semicon industry in 2014
Dr. Rhines said: “The outlook for the global semicon industry in 2014 is modestly positive. Most analysts will see single digiit growth. In memory, we have short supply vs. demand. While we had consolidation of the wireless industry, we still have volumes of handsets, tablets, etc. In the US, tablets are said to be the biggest growth area during Xmas.

“When you look at any product, you look at what more can it do. You look at more and more features that can be added. We have speciallization in ARM-based chips. There are enough change dynamics that show demand. The iPad bridged the gap between the portable PC and phone. The infrastructure of apps has now made a huge infrastructure. If you are dependant on apps, there can be a differentiator.

“Wearable electronics is another great opportunity. However, it is still a small market. The electronic watch is interesting. We are in an era where there are some things that are key, and some require figuring out. There will be more and more need for specific devices, rather than only applications in future. The same thing was with the PC, which went from custom to specific needs.”

In that case, how is the global semiconductor industry performing having entering the sub 20nm era?

He said that 2014 is going to be a big year. There will be releases of 14/16nm technologies. This will be the year when customers will be doing tests. There are companies in all regions of the world that will be doing such stuff.

Have FinFETs gone to 20nm? Are those looking for power reduction now benefiting?

Dr. Rhines said: “The big advantage is leakage. FinFET dramatically impacts current leakage. Now, attention will shift to dynamic power. It will once again be predominantly the consumer of power in large chips.

Outlook for EDA industry
Now, let’s see what’s the outlook for the global EDA industry in 2014.

Dr. Rhines said: “Whenever you create new technologies, you will need EDA. So, EDA will grow. New designs will also need EDA. There will be new EDA tools. EDA is now addressing thermal and stress issues in verification and design. Caliber PERC is our main product here. The upgrades are good for EDA. There are new things they have to adopt, in these tools.”

Let’s talk a bit about embedded. Mentor released the new version of Sourcery CodeBench. What does it stand to gain?

Raghu Panicker, sales director, Mentor Graphics India said the Sourcery CodeBench is a real-time operating system (RTOS). That product is gaining momentum. Large MNC customers like Qualcomm are adopting this. Among small firms, there are medical, energy meter companies that are handling it as well.

Dr. Rhines added that Sorcery CodeBench is indicative of a trend – it is very open source based. It is now 20,000 downloads a month, so that is a big community.

Next is there any scope for the growth of biomems and optical telecom industry?

He said that both areas are interesting. Biomems are still a fairly small market. It is going to be evolutionary. As for optical telecom, over the last year or two, all participants have gone into a silent mode. Mentor is working with a number of customers.

Five trends to rule in 2014
Now, it was quiz time. First, the top five trends in the EDA industry during 2014. Dr. Rhines said:
* Growth of emulation for verification. The market is growing at over CAGR of 25 percent. Emulation is really big. It will be a big game changer for EDA.
* 16/14nm.
* Continued pressure on power as we go to FinFETs.
* Power reduction.
* Yield analysis for 14/16nm. A near range can be security.

Now, the top five trends for semiconductors in 2014! Dr. Rhines mentioned these as:
* Move to 14/16nm and cost.
* Growth in hybrid functions is another trend.
* Basic IoT.
* Security – how you verify designs.
* Continued commoditization of wireless apps.
Read more…

Moore’s Law good for 14nm, and probably, 10nm: Dr. Wally Rhines


Its a pleasure to talk to Dr. Walden (Wally) C. Rhines, chairman and CEO, Mentor Graphics Corp. On his way to DAC 2013, where he will be giving a ten-minute “Visionary Talk”, he found time to speak with me. First, I asked him given that the global semiconductor industry is entering the sub-20nm era, will it continue to be ‘business as usual’ or ‘it’s going to be different this time’?

Dr. Wally Rhines.

Dr. Wally Rhines.

Dr. Rhines said: “Every generation has some differences, even though it usually seems like we’ve seen all this before. The primary change that comes with “sub-20nm” is the change in transistor structure to FinFET. This will give designers a boost toward achieving lower power. However, compared to 28nm, there will be a wafer cost penalty to pay for the additional process complexity that also includes two additional levels of resolution enhancement.”

Impact of new transistor structures
How will the new transistor structures impact on design and manufacturing?

According to him, the relatively easy impact on design is related to the simulation of a new device structure; models have already been developed and characterized but will be continuously updated until the processes are stable. More complex are the requirements for place and route and verification; support for “fin grids” and new routing and placement rules has already been implemented by the leading place and route suppliers.

He added: “Most complex is test; FinFET will require transistor-level (or “cell-aware”) design for test to detect failures, rather than just the traditional gate-level stuck-at fault models. Initial results suggest that failure to move to cell-aware ATPG will result in 500 to 1000 DPM parts being shipped to customers.

“Fortunately, “cell-aware” ATPG design tools have been available for about a year and are easily implemented with no additional EDA cost. Finally, there will be manufacturing challenges but, like all manufacturing challenges, they will be attacked, analyzed and resolved as we ramp up more volume.”

Introducing 450mm wafer handling and new lithography
Is it possible to introduce 450mm wafer handling and new lithography successfully at this point in time?

“Yes, of course,” Dr. Rhines said. “However, there are a limited number of companies that have the volume of demand to justify the investment. The wafer diameter transition decision is always a difficult one for the semiconductor manufacturing equipment companies because it is so costly and it requires a minimum volume of machines for a payback. In this case, it will happen. The base of semiconductor manufacturing equipment companies is becoming very concentrated and most of the large ones need the 450mm capability.”

What will be the impact of transistor variability and other physics issues?

As per Dr. Rhines, the impact should be significant. FinFET, for example requires controlling physical characteristics of multiple fins within a narrow range of variability. As geometries shrink, small variations become big percentages. New design challenges are always interesting for engineers but the problems will be overcome relatively quickly.
Read more…

Agnisys makes design verification process extremely efficient!


Agnisys Inc. was established in 2007 in Massachusetts, USA, with a mission to deliver innovative automation to the semiconductor industry. The company offers affordable VLSI design and verification tools for SoCs, FPGAs and IPs that makes the design verification process extremely efficient.

Agnisys’ IDesignSpec is an award winning engineering tool that allows an IP, chip or system designer to create the register map specification once and automatically generate all possible views from it. Various outputs are possible, such as UVM, OVM, RALF, SystemRDL, IP-XACT etc. User defined outputs can be created using Tcl or XSLT scripts. IDesignSpec’s patented technology improves engineer’s productivity and design quality.

The IDesignSpec automates the creation of registers and sequences guaranteeing higher quality and consistent results across hardware and software teams. As your ASIC or FPGA design specification changes, IDesignSpec automatically adjusts your design and verification code, keeping the critical integration milestones of your design engineering projects synchronized.

Register verification and sequences consume up to 40 percent of project time or more when errors are the source of re-spins of SoC silicon or an increase in the number of FPGA builds. IDesignSpec family of products is available in various flavors such as IDSWord, IDSExcel, IDSOO and IDSBatch.

IDesignSpec more than a tool for creating register models!
Anupam Bakshi, founder, CEO and chairman, Agnisys, said: “IDesignSpec is more than a tool for creating register models. It is now a complete Executable Design Specification tool. The underlying theme is always to capture the specification in an executable form and generate as much code in the output as possible.”

The latest additions in the IDesignSpec are Constraints, Coverage, Interrupts, Sequences, Assertions, Multiple Bus Domains, Special Registers and Parameterization of outputs.

“IDesignSpec offers a simple and intuitive way to specify constraints. These constraints, specified by the user, are used to capture the design intent. This design intent is transformed into code for design, verification and software. Functional Coverage models can be automatically generated from the spec so that once again the intent is captured and converted into appropriate coverage models,” added Bakshi.

Using an add-on function of capturing Sequences, the user is now able to capture various programming sequences in the spec, which  are translated into C++ and UVM sequences, respectively. Further, the interrupt registers can now be identified by the user and appropriate RTL can be generated from the spec. Both edge sensitive and level interrupts can be handled and interrupts from various blocks can be stacked.

Assertions can be automatically generated from the high level constraint specification. These assertions can be created with the RTL or in the external files such that they can be optionally bound to the RTL. Unit level assertions are good for SoC level verification and debug, and help the user in identifying issues deep down in the simulation hierarchy.

The user can now identify one or more bus domains associated with Registers and Blocks, and generate appropriate code from it. Special Registers such as shadow registers and register aliasing is also automatically generated.

Finally all of the outputs such as RTL, UVM, etc., can be parameterized now, so that a single master specification can be used to create outputs that can be parameterized at the elaboration time.

How is IDesignSpec working as chip-level assertion-based verification?

Bakshi said: “It really isn’t an assertion tool! The only assertion that we automatically generate is from the constraints that the user specifies. The user does not need to specify the assertions. We transform the constraints into assertions.”
Read more…

Dr. Wally Rhines on global semiconductor industry trends for 2013


It is always a pleasure speaking with Dr. Walden (Wally) C. Rhines, chairman and CEO, Mentor Graphics Corp. I met him on the sidelines of the 13th Global Electronics Summit, held at the Chaminade Resort & Spa, Santa Cruz, USA.

Status of global EDA industry

Dr. Wally Rhines.

Dr. Wally Rhines.

First, I asked Dr. Rhines how the EDA industry was doing. Dr. Rhines said: “The global EDA industry has been doing pretty well. The results have been pretty good for 2012. In general, the EDA industry tends to follow the semiconductor R&D by at least 18 months.”

For the record, the electronic design automation (EDA) industry revenue increased 4.6 percent for Q4 2012 to $1,779.1 million, compared to $1,700.1 million in Q4 2011.

Every region, barring Japan, grew in 2012. The Asia Pacific rim grew the fastest – about 12.5 percent. The Americas was the second fastest region in terms of growth at 7.4 percent, and Europe grew at 6.8 percent. However, Japan decreased by 3 percent in 2012.

In 2012, the segments that have grown the fastest within the EDA industry include PCB design and IP, respectively. The front-end CAE (computer aided engineering) group grew faster than the backend CAE. By product category, CAE grew 9.8 percent. The overall growth for license and maintenance was 7 percent. Among the CAE areas, design entry grew 36 percent and emulation 24 percent, respectively.

DFM also grew 28 percent last year. Overall, PCB grew 7.6 percent, while PCB analysis was 25 percent. IP grew 12.6 percent, while the verification IP grew 60 percent. Formal verification and power analysis grew 16 percent each, respectively. “That’s actually a little faster than how semiconductor R&D is growing,” added Dr. Rhines.

Status of global semicon industry
On the fortunes of the global semiconductor industry. Dr. Rhines said: “The global semiconductor industry grew very slowly in 2012. Year 2013 should be better. Revenue was actually consolidated by a lot of consolidations in the wireless industry.”

According to him, smartphones should see further growth. “There are big investments in capacities in the 28nm segment. Folks will likely redesign their products over the next few years,” he said. “A lot of firms are waiting for FinFET to go to 20nm. People who need it for power reduction should benefit.”

“A lot of people are concerned about Japan. We believe that Japan can recover due to the Yen,” he added.
Read more…

Embedded software: Next revolution in EDA


Dr. Wally Rhines.

Dr. Wally Rhines.

There is a key lesson that Mentor Graphics made while trying to deliver solutions that were right for software and hardware developers. The lesson was: tailor the software to the discipline! Make it as similar to their environment as possible!!

Delivering his speech at the ongoing 13th Global Electronics Summit in Santa Cruz, USA, Dr. Wally Rhines, chairman and CEO, Mentor Graphics, said that 15 years of acquisitions taught Mentor how to think and behave as an embedded software company.

Open systems requires active engagement in software committees. Each open source project has some form of governance to manage contributions, release plans, etc. There is a community peer selection process for each open source project. About 50 Mentor Embedded Sourcerers are actively involved in the open source and Android communities.

There is a need to take the advantage of knowing both worlds. Mentor’s Sourcery CodeBench is an embedded C/C++ development tool based on open-source standards. Sourcery CodeBench is a complete development environment for embedded C/C++ development on ARM, Coldfire, MIPS, Power, X86, and other architectures. You can install, flash and debug in minutes!

Sourcery CodeBench
Sourcery CodeBench is now the semiconductor industry’s leading embedded toolchain. There is an integrated development environment. It has the GNU compiler (GCC) and optimization tools. It allows debugging and analysis, libraries and QEMU simulator.

There are about ~15,000 downloads per month. There have been ~150,000 downloads and 300 releases per year.

Focus on good power-aware verification strategy for SoCs: Dr. Wally Rhines

January 7, 2013 1 comment

Dr. Wally Rhines.

Dr. Wally Rhines.

It is always a pleasure to chat with Dr. Wally (Walden C.) Rhines, chairman and CEO, of Mentor Graphics. I chatted with him, trying to understand gigascale design, verification trends, strategy for power-aware verification, SERDES design challenges, migrating to 3D FinFET transistors, and Moore’s Law getting to be “Moore Stress”!

Chip design in gigascale, hertz, complex
First, I asked him to elaborate on how implementation of chip design will evolve, with respect to gigascale design, gigahertz and gigacomplex geometries.

He said: “Thanks to close co-operation among members of the foundry ecosystem, as well as cooperation between IDMs and their suppliers, serious development of design methods and software tools is running two to three generations ahead of volume manufacturing capability. For most applications, “Gigascale” power dissipation is a bigger challenge than managing the complexity but “system-level” power optimization tools will continue to allow rapid progress. Thermal analysis is becoming part of the designer’s toolkit.”

Functional verification is continually challenged by complexity but there have been, and continue to be, many orders of magnitude improvement in performance just from adoption of emulation, intelligent test benches and formal methods so this will not be a major limitation.

The complexity of new physical design problems will, however, be very challenging. Design problems ranging from basic ESD analysis, made more complex due to multiple power domains, to EMI, electromigration and intra-die variability are now being addressed with new design approaches. Fortunately, programmable electrical rule checking is being widely adopted and will help to minimize the impact of these physical effects.

Is verification keeping up?
How is the innovation in verification keeping up with trends?

Dr. Rhines added that over the past decade, microprocessor clock speeds have leveled out at 3 to 4 GHz and server performance improvement has come mostly from multi-core architectures. Although some innovative approaches have allowed simulators to gain some advantage from multi-core architectures, the speed of simulators hasn’t kept up with the growing complexity of leading edge chips.

Emulators have more than made up the difference. Emulators offer more than four orders of magnitude faster performance than simulators and emulators do so at about 0.005X the cost per cycle of simulation. The cost of power per year is more than one third the cost of hardware in a large simulation farm today, while emulation offers a 12X savings in power per verification clock cycle. For those who design really complex chips, a combination of emulation and simulation, along with formal methods and intelligent test benches, has become standard.

At the block and subsystem level, high level synthesis is enabling the next move up in design and verification abstraction. Since verification complexity grows at about the square of component count, we have plenty of room to handle larger chips by taking advantage of the four orders of magnitude improvement through emulation plus another three or four orders of magnitude through formal verification techniques, two to three orders of magnitude from intelligent test benches and three orders of magnitude from higher levels of abstraction.

By applying multiple engines and multiple abstraction levels to the challenge of verifying chips, the pressure is on to integrate the flow. Easily transitioning and reusing verification efforts from every level—including tests and coverage models, from high level models to RTL and from simulation to emulation—is being enabled through more powerful and adaptable verification IP and high level, graph-based test specification capabilities. These are keys to driving verification reuse to match the level of design reuse.

Powerful verification management solutions enable the collection of coverage information from all engines and abstraction levels, tracking progress against functional specifications and verification plans. Combining verification cycle productivity growth from emulation, formal, simulation and intelligent testing with higher verification abstraction, re-use and process management provides a path forward to economically verifying even the largest, most complex chips on time and within budget.

Good power-aware verification strategy for SoCs
What should be a good power-aware verification strategy for SoCs

According to him, the most important guideline is to start power-aware design at the highest possible level of system description. The opportunity to reduce system power is typically an order of magnitude greater at the system level than at the RTL level. For most chips today, that means at least the transaction level when the design is still described in C++ or SystemC.

Significant experience and effort should then be invested at the RTL level using synthesis and UPF-enabled simulation. Verification solutions typically automate the generation of correctness checks for power-control sequences and power-state coverage metrics. As SoC power is typically managed by software, the value of a hardware/software co-verification and co-debug solution in simulation and emulation becomes apparent in power-management verification at this level.

As designers proceed to the gate and transistor level, accuracy of power estimation improves. That is why gate level analysis and verification of the fully implemented power management architecture is important. Finally, at the physical layout, designers traditionally were stuck with whatever power budget was passed down to them. Now,they increasingly have power goals that can be achieved using dozens of physical design techniques that are built into the place and route tools.
Read more…

Round-up 2012: Best of electronics, semiconductors and solar

December 31, 2012 2 comments

Friends, here is the round-up of 2012, where the best of electronics, semiconductors and solar PV are presented. Best wishes for a very happy and prosperous new year! :)

Also, a word on the horrendous Delhi rape that has shaken up India. I am ashamed to be a man and a part of India’s society. My family and I are extremely sorry that the brave girl is no more! May her soul rest in peace. May God deliver justice, and quickly!

DECEMBER 2012
Opportunities in turbulent PV equipment market

Global semiconductor industry outlook 2013: Jaswinder Ahuja, Cadence

Next wave of design challenges, and future growth of EDA: Dr. Wally Rhines

Global medical image sensors market to grow 64 percent by 2017

Status of power semiconductor devices industry

NOVEMBER 2012
Global solar PV industry to remain under pressure in 2013!

Dr. Wally Rhines on global semiconductor industry outlook 2013

Focus on monolithic 3D-ICs paradigm shift for semicon industry

Xilinx announces 20nm portfolio strategy

Elliptic intros world’s first commercial touchless gesturing technology!

Global semiconductor industry outlook 2013: Analog Devices

IMEC’s 450mm R&D initiative for nanoelectronics ecosystem

OCTOBER 2012
III-V high mobility semiconductors for advanced CMOS apps

Yet another electronics policy for India?

IEF 2012: Turning recession into opportunity!

Global semicon sales to drop 1.7 percent in 2012?

Virtual prototyping ready for masses

MEMS to be $21 billion market by 2017: Yole

TSMC on 450mm transition: Lithography key!

SEPTEMBER 2012
Cadence Allegro 16.6 accelerates timing closure

Dr. Wally Rhines on global EDA industry

Solarcon India 2012: Solar industry in third wave!

AUGUST 2012
Apple wins big vs. Samsung in patent war!

Can being fabless and M-SIPS take India to top?

JULY 2012
Is Europe ready for 450mm fabs?

APRIL 2012
Xilinx intros Vivado Design Suite

MARCH 2012
Cadence releases latest Encounter RTL-to-GDSII flow

WLCSP market and industrial trends

FEBRUARY 2012
Top 10 semiconductor growth drivers: Intersil

Ingredients for successful fabless Indian semiconductor industry: Dr. Wally Rhines

Tariffs will slow growth in domestic demand for PV systems: The Brattle Group

Wireless leads in global semicon spends!

JANUARY 2012
India to allow imports of low-priced Chinese solar cells? Or, is it beaten?

Next wave of design challenges, and future growth of EDA: Dr. Wally Rhines

December 15, 2012 1 comment

Dr. Wally Rhines.

Dr. Wally Rhines.

Today, EDA requires specialization. Elaborating on EDA over the past decade, Dr. Walden (Wally) C. Rhines, chairman and CEO, of Mentor Graphics, and vice chairman of the EDA Consortium, USA, said that PCB design has been flat despite growth in analysis, DFM and new emerging markets. Front end design has seen growth from RF/analog design and simulation, and analysis As design methodologies mature, EDA expenditures stop growing. He was speaking at Mentor Graphics’ U2U (User2User) conference in Bangalore, India.

Most of the EDA revenue growth comes from major new design methodologies, such as ESL, DFM, analog-mixed signal and RF. PCB design trend continues to be flat, and includes license and maintenance. The IC layout verification market is pointing to a 2.1 percent CAGR at the end of 2011. The RTL simulation market has been growing at 1.3 percent CAGR for the last decade. The IC physical implementation market has been growing at 3,4 percent CAGR for the last decade.

Growth areas in EDA from 2000-2011 include DFM at 28 percent CAGR, formal verification at 12 percent, ESL at 11 pecent, and IC/ASIC analysis at 9 percent, respectively.

What will generate the next wave of electronic product design challenges, and the future growth of EDA? This would involve solving new problems that are not part of the traditional EDA, and ‘do what others don’t do!

Methodology changes that may change EDA
There are five factors that can make this happen. These are:
* Low power design beyond RTL (and even ESL).
* Functional verification beyond simulation.
* Physical verification beyond design for manufacturability.
* Design for test beyond compression.
* System design beyond PCBs

Low power design at higher levels
Power affects every design stage. Sometimes, designing for low power at system level is required. System level optimization has the biggest impact on power/performance. And, embedded software is a major point of leverage.

Embedded software has an increasing share of the design effort. Here, Mentor’s Nucleus power management framework is key. It has an unique API for power management, enables software engineers to optimize power consumption, and reduces lines of application code. Also, power aware design optimizes code efficiency.

Functional verification beyond RTL simulation
The Verification methodology standards war is over. UVM is expected to grow by 286 percent in the next 12 months. Mentor Graphics Questa inFact is the industry’s most advanced testbench automation solution. It enables Testbench re-use and accelerates time-to-coverage. Intelligent test bench facilitates linear transition to multi-processing.

Questa accelerates the hardware/software verification environment. In-circuit emulation has been evolving to virtual hardware acceleration and embedded software development. Offline debug increases development productivity. A four-hour on-emulator software debug session drops to 30 minutes batch run. The offline debug allows 150 software designers to jumpstart debug process on source code. Virtual stimulus increases the flexibility of the emulator. As an example, Veloce is 700x more efficient than large simulation farms.

Physical verification beyond design for manufacturability
The Calibre PERC is a new approach to circuit verification. The Calibre 3DSTACK is the verification flow for 3D.
Read more…

%d bloggers like this: