Archive for the ‘GaN market’ Category

IEF 2013: New markets and opportunities in sub-20nm era!

October 15, 2013 1 comment

Future Horizons hosted the 22nd Annual International Electronics Forum, in association with IDA Ireland, on Oct. 2-4, 2013, at Dublin, Blanchardstown, Ireland. The forum was titled ‘New Markets and Opportunities in the Sub-20nm Era: Business as Usual OR It’s Different This Time.” Here are excerpts from some of the sessions. Those desirous of finding out much more should contact Malcolm Penn, CEO, Future Horizons.

Liam BritnellLiam Britnell, European manager and Research Scientist, Bluestone Global Tech (BGT) Materials spoke on Beyond Graphene: Heterostructures and Other Two-Dimensional Materials.

The global interest in graphene research has facilitated our understanding of this rather unique material. However, the transition from the laboratory to factory has hit some challenging obstacles. In this talk I will review the current state of graphene research, focusing on the techniques which allow large scale production.

I will then discuss various aspects of our research which is based on more complex structures beyond graphene. Firstly, hexagonal boron nitride can be used as a thin dielectric material where electrons can tunnel through. Secondly, graphene-boron nitride stacks can be used as tunnelling transistor devices with promising characteristics. The same devices show interesting physics, for example, negative differential conductivity can be found at higher biases. Finally, graphene stacked with thin semiconducting layers which show promising results in photodetection.

I will conclude by speculating the fields where graphene may realistically find applications and discuss the role of the National Graphene Institute in commercializing graphene.

Jean-Rene Lequepeys, VP Silicon Components, CEA-Leti, spoke on  Advanced Semiconductor Technologies Enabling High-Performance Jean-Rene Lequepeysand Energy Efficient Computing.

The key challenge for future high-end computing chips is energy efficiency in addition to traditional challenges such as yield/cost, static power, data transfer. In 2020, in order to maintain at an acceptable level the overall power consumption of all the computing systems, a gain in term of power efficiency of 1000 will be required.

To reach this objective, we need to work not only at process and technology level, but to propose disruptive multi-processor SoC architecture and to make some major evolutions on software and on the development of
applications. Some key semiconductor technologies will definitely play a key role such as: low power CMOS technologies, 3D stacking, silicon photonics and embedded non-volatile memory.

To reach this goal, the involvement of semiconductor industries will be necessary and a new ecosystem has to be put in place for establishing stronger partnerships between the semiconductor industry (IDM, foundry), IP provider, EDA provider, design house, systems and software industries.

Andile NgcabaAndile Ngcaba, CEO, Convergence Partners, spoke on Semiconductor’s Power and Africa – An African Perspective.

This presentation looks at the development of the semiconductor and electronics industries from an African perspective, both globally and in Africa. Understanding the challenges that are associated with the wide scale adoption of new electronics in the African continent.

Electronics have taken over the world, and it is unthinkable in today’s modern life to operate without utilising some form of electronics on a daily basis. Similarly, in Africa the development and adoption of electronics and utilisation of semiconductors have grown exponentially. This growth on the African continent was due to the rapid uptake of mobile communications. However, this has placed in stark relief the challenges facing increased adoption of electronics in Africa, namely power consumption.

This background is central to the thesis that the industry needs to look at addressing the twin challenges of low powered and low cost devices. In Africa there are limits to the ability to frequently and consistently charge or keep electronics connected to a reliable electricity grid. Therefore, the current advances in electronics has resulted in the power industry being the biggest beneficiary of the growth in the adoption of electronics.

What needs to be done is for the industry to support and foster research on this subject in Africa, working as a global community. The challenge is creating electronics that meet these cost and power challenges. Importantly, the solution needs to be driven by the semiconductor industry not the power industry. Focus is to be placed on operating in an off-grid environment and building sustainable solutions to the continued challenge of the absence of reliable and available power.

It is my contention that Africa, as it has done with the mobile communications industry and adoption of LED lighting, will leapfrog in terms of developing and adopting low powered and cost effective electronics.

Jo De Boeck, senior VP and CTO, IMEC, discussed Game-Changing Technology Roadmaps For Lifescience. Jo De Boeck

Personalized, preventive, predictive and participatory healthcare is on the horizon. Many nano-electronics research groups have entered the quest for more efficient health care in their mission statement. Electronic systems are proposed to assist in ambulatory monitoring of socalled ‘markers’ for wellness and health.

New life science tools deliver the prospect of personal diagnostics and therapy in e.g., the cardiac, neurological and oncology field. Early diagnose, detailed and fast screening technology and companioning devices to deliver the evidence of therapy effectiveness could indeed stir a – desperately needed – healthcare revolution. This talk addresses the exciting trends in ‘PPPP’ health care and relates them to an innovation roadmap in process technology, electronic circuits and system concepts.
Read more…

Status of power semiconductor devices industry

December 3, 2012 2 comments

Power2There are more available solutions than ever in power devices, according to Alexandre Avron, market and technology analyst, Yole Développement. The landscape is moving, and its moving quite fast, from every region of the world.

There are many opportunities for power device manufacturers. This is the time for strong strategic planning and making the best choices. He was speaking at a seminar on the power semiconductor devices industry, in Lyon, France.

Silicon is not dead and will still live for a long time. Standard device design are slowly disappearing (planar IGBT, planar MOSFET). IGBT and SJ MOS are highly mature technologies. Rules of competition are evolving.

Historic players need to keep on innovating. New entrants have a different business model: there are more and more foundries, with fab-less and fab-light players. IGBT is still a key asset: master and secure IGBT supply is necessary for system makers. SJ MOSFETS will be used in more and more systems, taking market shares to planar MOSFET.

About SiC and GaN, there is still a big question mark: Where and when? With time, it is becoming clearer. SiC will target medium and Power3high power. From our point of view, medium power (1200V base) is a mean to arrive to high power (+3.3kV). R&D has to go through this to reach higher voltage. The main issue is still on current ratings (having a high impact on cost).

GaN will target low and medium power, and will probably allow extraordinary power supplies designs (Tiny supplies, very high frequency systems). It is almost ready for 600V, but not yet at 1200V. It leaves room for SiC to develop and expand.  Major players are involved on both fields — SiC and GaN. They need to be present on both domains, as there will be an overlap, but the split is unclear: we will probably experience a very fine segmentation, not only by voltage or current, but also by frequency, ruggedness, system size, temperature of operation or maybe culture or history.

SiC is now here. First full SiC PV inverters are available. First field tests for SiC in rail traction is ongoing. GaN is under qualification. According to the most advanced players, 600V GaN devices samples are tested by system makers.
Read more…

%d bloggers like this: