Archive

Archive for the ‘global chip market’ Category

Are we about to reach end of Moore’s Law?


Here is the concluding part of my discussion with Sam Fuller, CTO, Analog Devices. We discussed the technology aspects of Moore’s Law and

Sam Fuller

Sam Fuller

‘More than Moore’, among other things.

Are we at the end of Moore’s Law?
First, I asked Fuller that as Gordon Moore suggested – are we about to reach the end of Moore’s Law? What will it mean for personal computing?

Fuller replied: “There is definitely still life left in Moore’s law, but we’re leaving the golden age after the wonderful ride that we have had for the last 40 years. We will continue to make chips denser, but it is becoming difficult to continue to improve the performance as well as lower the power and cost.

“Therefore, as Moore’s law goes forward, more innovation is required with each new generation. As we move from Planer CMOS to FinFET (a new technology for multi-gate architecture of transistors); from silicon to more advanced materials Moore’s law will still have life for the next decade, but we are definitely moving into its final stages.

“For personal computing, there is still a lot of innovation left before we begin to run out of ideas. There will continue to be great advances in smart phones, mobile computing and tablets because software applications are really just beginning to take advantage of the phenomenal power and capacity of today’s semiconductors. The whole concept of ‘Internet of things’ will also throw up plenty of new opportunities.

“As we put more and more sensors in our personal gadgets, in factories, in industries, in infrastructures, in hospitals, and in homes and in vehicles, it will open up a completely new set of applications. The huge amount of data generated out of these sensors and wirelessly connected to the Internet will feed into the big data and analytics. This would create a plethora of application innovations.”

What’s happening in the plane?
The plane opportunity – 90nm – 65nm – 45nm – 22nm – 20nm – 14/18nm – is starting to get difficult and probably won’t work at 12nm, for purely physics reasons. What is Analog Devices’ take on this?

Fuller said: “You are right! We have been going from 45 nm down to lower nodes, it’ll probably go down to 10 nm, but we are beginning to run into some fundamental physics issues here. After all, it’s a relatively finite number of atoms that make up the channels in these transistors. So, you’re going to have to look at innovations beyond simply going down to finer dimensions.

“There are FinFETS and other ways that can help move you into the third dimension. We’re getting to a point where we can put a lot of complexity and a number of functions on a single die. We have moved beyond purely digital design to having more analog and mixed signal components in the same chip. There are also options such as stacked dies and multiple dies.

“Beyond integration on a single chip, Analog Devices leads in advanced packaging technologies for System in a Package (SiP) where sensors, digital and analog/mixed signal components are all in a single package as the individual components would typically use different technology nodes and it might not be practical to do such integration on a single die.

“So, the challenge often gets described as “More than Moore”, which is going beyond Moore’s law, bringing those capabilities to do analog processing as well as digital and then integrating sensors for temperature sensing, pressure sensing, motion sensing and a whole range of sensors integrated for enabling the ‘Internet of Things’.

“At Analog Devices, we have the capability in analog as well as digital, and having worked for over 20 years on MEMS devices, we are particularly well positioned as we get into ‘More than Moore’.”
Read more…

STMicro intros M24SR dynamic NFC/RFID tag


Amit Sethi

Amit Sethi

STMicroelectronics recently introduced the M24SR dynamic NFC/RFID tag.

Speaking about the USP of the M24SR, Amit Sethi, Product Marketing manager – Memories and RFID, STMicroelectronics India, said: “The unique selling proposition of the M24SR product is its two interfaces, giving users and applications the ability to program or read its memory using either an RF NFC interface or a wired I2C interface, in an affordable and easy-to-use device for a wide range of applications such as consumer/home appliance, OTP card, healthcare/wellness and industrial/smart meter.”

Let us see how the M24SR is beneficial for smartphone or any other audio device.

The M24SR is a dynamic NFC/RFID tag that manages the data exchange between the NFC phone and the microcontroller. The main use cases for data exchange are updating user settings, downloading data logs, and remote programming and servicing. The dynamic tag also enables seamless Bluetooth and Wi-Fi pairing, which is useful in, for example, audio devices.

How is the M24SR different from other products of the same segment?

Sethi said that the key difference is the dual interface: the M24SR memory can be accessed either by a low-power 2C interface or

M24SR

M24SR

by an ISO14443A RF interface operating at 13.56MHz. It also features RF status (MCU wake-up) and RF disable functions to minimize power consumption. In addition, the devices support the NFC data exchange format (NDEF from NFC forum) and 128-bit password protection mechanism.

The M24SR series is available in EEPROM memory densities from 2 Kbit to 64 Kbit and three package types: SO8, TSSOP8, and UFDFPN8.

What are the contributions of M24SR toward the Internet of Things?

Accotding to him, the M24SR dynamic NFC/RFID tag interactive and zero power capability, simplifies complex communications setups and enables data exchange among the home automation, wearable electronics, home appliances, smart meter, wellness, etc.

Especially with the NFC capability, the M24SR is ideal for applications waiting for something, like a ticket or ID to launch an activity.

Relevance for India
Finally, what’s the relevance of the product for the Indian market?

Sethi added: “Mobile and NFC based application are gaining its popularity in India. M24SR is an easy-to-use and an affordable product for the Implementation of NFC-based applications in transportation, entertainment, and lifestyle areas.

As for the go-to-market strategy, the M24SR mass market launch is planned for end of February 2014. Some M24SR samples have been delivered to key customers during Q4 2013 and design/development is ongoing.

Can 2014 be a major year for global semicon industry?


The year 2014 is expected to be a major year for the global semiconductor industry. The industry will and continue to innovate!

Apparently, there are huge expectations from certain segments such as the so-called Internet of Things (IoT) and wearable electronics. There will likely be focus on the connected car. Executives have been stating there could be third parties writing apps that can help cars. Intel expects that technology will be inspiring optimism for healthcare in future. As per a survey, 57 percent of people believe traditional hospitals will be obsolete in the future.

Some other entries from 2013 include Qualcomm, who introduced the Snapdragon 410 chipset with integrated 4G LTE world mode for high-volume smartphones. STMicroelectronics joined ARM mbed project that will enable developers to create smart products with ARM-based industry-leading STM32 microcontrollers and accelerate the Internet of Things.

A look at the industry itself is interesting! The World Semiconductor Trade Statistics Inc. (WSTS) is forecasting the global semiconductor market to be $304 billion in 2013, up 4.4 percent from 2012. The market is expected to recover throughout 2013, driven mainly by double digit growth of Memory product category. By region, all regions except Japan will grow from 2012. Japan market is forecasted to decline from 2012 in US dollar basis due to steep Japanese Yen depreciation compared to 2012.

WSTS estimates that the worldwide semiconductor market is predicted to grow further in 2014 and 2015. According to WSTS, the global semiconductor market is forecasted to be up 4.1 percent to $317 billion in 2014, surpassing historical high of $300 billion registered in 2011. For 2015, it is forecasted to be $328 billion, up 3.4 percent.

All product categories and regions are forecasted to grow positively in each year, with the assumption of macro economy recovery throughout the forecast period. By end market, wireless and automotive are expected to grow faster than total market, while consumer and computer are assumed to remain stagnant.

Now, all of this remains to be seen!

Earlier, while speaking with Dr. Wally Rhines of Mentor, and Jaswinder Ahuja of Cadence, both emphasized the industry’s move to 14/16nm. Xilinx estimates that 28nm will have a very long life. It also shipped the 20nm device in early Nov. 2013.

In a 2013 survey, carried out by KPMG, applications markets identified as most important by at least 55 percent of the respondents were: Mobile technology – 69 percent; Consumer – 66 percent; Computing – 63 percent; Alternative/Renewal Energy – 63 percent; Industrial – 62 percent; Automotive – 60 percent; Medical – 55 percent; Wireline Communications – 55 percent.

Do understand that there is always a line between hope and forecasts, and what the end result actually turns out to be! In the meantime, all of us continue to live with the hope that the global semiconductor will carry on flourishing in the years to come. As Brian Fuller, Cadence, says, ‘the future’s in our hands; let’s not blow it!’

Round-up 2013: Best of semiconductors, electronics and solar


Virtex UltraScale device.

Virtex UltraScale device.

Friends, here’s a review of 2013! There have been the usual hits and misses, globally, while in India, the electronics and semiconductor industries really need to do a lot more! Enjoy, and here’s wishing everyone a Very Happy and Prosperous 2014! Be safe and stay safe!!

DEC. 2013
What does it take to create Silicon Valley!

How’s global semicon industry performing in sub-20nm era?

Xilinx announces 20nm All Programmable UltraSCALE portfolio

Dr. Wally Rhines: Watch out for 14/16nm technologies in 2014!

Outlook 2014: Xilinx bets big on 28nm

NOV. 2013
Indian electronics scenario still dull: Leaptech

Connecting intelligence today for connected world: ARM

India poses huge opportunity for DLP: TI

SEMICON Europa 2013: Where does Europe stand in 450mm path?

OCT. 2013
Apple’s done it again, wth iPad Air!

IEF 2013: New markets and opportunities in sub-20nm era!

SEPT. 2013
ST intros STM32F4 series high-performance Cortex-M4 MCUs

Great, India’s having fabs! But, is the tech choice right?

G450C

G450C

Now, India to have two semicon fabs!

Higher levels of abstraction growth area for EDA

AUG. 2013
Moore’s Law could come to an end within next decade: POET

What’s happening with 450mm: G450C update and status

300mm is the new 200mm!

JULY 2013
Xilinx tapes-out first UltraScale ASIC-class programmable architecture

JUNE 2013
EC’s goal: Reach 20 percent share in chip manufacturing by 2020!
Read more…

What does it take to create Silicon Valley!

December 29, 2013 1 comment

I was pointed out to a piece of news on TV, where a ruling chief minister of an Indian state apparently announced that he could make a particular state of India another Silicon Valley! Interesting!!

First, what’s the secret behind Silicon Valley? Well, I am not even qualified enough to state that! However, all I can say is: it is probably a desire to do something very different, and to make the world a better place – that’s possibly the biggest driver in all the entrepreneurs that have come to and out of Silicon Valley in the USA.

If you looked up Wikipedia, it says that the term Silicon Valley originally referred to the region’s large number of silicon chip innovators and manufacturers, but eventually, came to refer to all high-tech businesses in the area, and is now generally used as a metonym for the American high-technology sector.

So, where exactly is India’s high-tech sector? How many Indian state governments have even tried to foster such a sector? Ok, even if the state governments tried to foster, where are the entrepreneurs? Ok, an even easier one: how many school dropouts from India or even smal-time entrepreneurs have even made a foray into high-tech?

Right, so where are the silicon chip innovators from India? Sorry, I dd not even hear a word that you said? Can you speak out a little louder? It seems there are none! Rather, there has been very little to no development in India, barring the work that is done by the MNCs. Correct?
hsinchuOne friend told me that Bangalore is a place that can be Silicon Valley. Really? How?? With the presence of MNCs, he said! Well, Silicon Valley in the US does not have MNCs from other countries, are there? Let’s see! Some companies with bases in Silicon Valley, listed on Wikipedia, include Adobe, AMD, Apple, Applied Materials, Cisco, Facebook, Google, HP, Intel, Juniper, KLA-Tencor, LSI, Marvell, Maxim, Nvidia, SanDisk, Xilinx, etc.

Now, most of these firms have setups in Bangalore, but isn’t that part of the companies’ expansion plans? Also, I have emails and requests from a whole lot of youngsters asking me: ‘Sir, please advice me which company should I join?’ Very, very few have asked me: ‘Sir, I have this idea. Is it worth exploring?’

Let’s face the truth. We, as a nation, so far, have not been one to take up challenges and do something new. The ones who do, or are inclined to do so, are working in one of the many MNCs – either in India or overseas.

So, how many budding entrepreneurs are there in India, who are willing to take the risk and plunge into serious R&D?

It really takes a lot to even conceive a Silicon Valley. It takes people of great vision to build something of a Silicon Valley, and not the presence of MNCs.

Just look at Hsinchu, in Taiwan, or even Shenzhen, in China. Specifically, look up Shenzhen Hi-Tech Industrial Park and the Hsinchu Science Park to get some ideas.

Connecting intelligence today for connected world: ARM


ARMARM calls the spirit of innovation as collective intelligence at every level. It is within devices, between people, through tech and across the world. We are still pushing boundaries of mobile devices.

Speaking at the ARM Summit in Bangalore, Dr Mark Brass, corporate VP, Operations, ARM, said that the first challenge was the number of people on the planet. Technology development and innovation also pose challenges.

According to him, mobile phones are forecast to grow 7.3 percent in 2013 driven by 1 billion smartphones. Mobile data will ramp up 12 times between now and 2018. Mobile and connectivity are creating further innovation.

August, a compamy, has introduced an electronic lock for doors, controlled by the smartphone. Another one is Proteus, which looks at healthcare. The smartphone is becoming the center of our world. All sorts of sensors are also getting into smartphones. Next, mobile and connectivity are growing in automobiles. Companies like TomTom are competing with automobile companies. Connectivity is also transforming infrastructure and data centers. They are now building off the mobile experience.

As per ARM, an IoT survey done has revealed that 76 percent of companies are dealing with IoT. As more things own information, there will be much more data. The IoT runs on ARM.

“There’s more going on than just what you think. IoT is not just about things. Skills development should not be an afterthought. Co-operation is critical. Solutions will emerge. All sorts of things are going to happen. Three years from now, only 4 percent of companies won’t have IoT in the business at all,” Dr. Brass added.

IoT will be present in industrial, especially motors, transportation, energy, and healthcare. Smart meters are coming in to help with energy management. There is a move to Big Data from Little Data.

Challenges in 2020 would be in transportation, energy, healthcare and education. ARM and the ARM partnership is addressing those. “We are delivering an unmatched diversity of solutions. We are scaling from sensors to servers, connecting our world,” Dr. Brass concluded.

IEF 2013: New markets and opportunities in sub-20nm era!

October 15, 2013 1 comment

Future Horizons hosted the 22nd Annual International Electronics Forum, in association with IDA Ireland, on Oct. 2-4, 2013, at Dublin, Blanchardstown, Ireland. The forum was titled ‘New Markets and Opportunities in the Sub-20nm Era: Business as Usual OR It’s Different This Time.” Here are excerpts from some of the sessions. Those desirous of finding out much more should contact Malcolm Penn, CEO, Future Horizons.

Liam BritnellLiam Britnell, European manager and Research Scientist, Bluestone Global Tech (BGT) Materials spoke on Beyond Graphene: Heterostructures and Other Two-Dimensional Materials.

The global interest in graphene research has facilitated our understanding of this rather unique material. However, the transition from the laboratory to factory has hit some challenging obstacles. In this talk I will review the current state of graphene research, focusing on the techniques which allow large scale production.

I will then discuss various aspects of our research which is based on more complex structures beyond graphene. Firstly, hexagonal boron nitride can be used as a thin dielectric material where electrons can tunnel through. Secondly, graphene-boron nitride stacks can be used as tunnelling transistor devices with promising characteristics. The same devices show interesting physics, for example, negative differential conductivity can be found at higher biases. Finally, graphene stacked with thin semiconducting layers which show promising results in photodetection.

I will conclude by speculating the fields where graphene may realistically find applications and discuss the role of the National Graphene Institute in commercializing graphene.

Jean-Rene Lequepeys, VP Silicon Components, CEA-Leti, spoke on  Advanced Semiconductor Technologies Enabling High-Performance Jean-Rene Lequepeysand Energy Efficient Computing.

The key challenge for future high-end computing chips is energy efficiency in addition to traditional challenges such as yield/cost, static power, data transfer. In 2020, in order to maintain at an acceptable level the overall power consumption of all the computing systems, a gain in term of power efficiency of 1000 will be required.

To reach this objective, we need to work not only at process and technology level, but to propose disruptive multi-processor SoC architecture and to make some major evolutions on software and on the development of
applications. Some key semiconductor technologies will definitely play a key role such as: low power CMOS technologies, 3D stacking, silicon photonics and embedded non-volatile memory.

To reach this goal, the involvement of semiconductor industries will be necessary and a new ecosystem has to be put in place for establishing stronger partnerships between the semiconductor industry (IDM, foundry), IP provider, EDA provider, design house, systems and software industries.

Andile NgcabaAndile Ngcaba, CEO, Convergence Partners, spoke on Semiconductor’s Power and Africa – An African Perspective.

This presentation looks at the development of the semiconductor and electronics industries from an African perspective, both globally and in Africa. Understanding the challenges that are associated with the wide scale adoption of new electronics in the African continent.

Electronics have taken over the world, and it is unthinkable in today’s modern life to operate without utilising some form of electronics on a daily basis. Similarly, in Africa the development and adoption of electronics and utilisation of semiconductors have grown exponentially. This growth on the African continent was due to the rapid uptake of mobile communications. However, this has placed in stark relief the challenges facing increased adoption of electronics in Africa, namely power consumption.

This background is central to the thesis that the industry needs to look at addressing the twin challenges of low powered and low cost devices. In Africa there are limits to the ability to frequently and consistently charge or keep electronics connected to a reliable electricity grid. Therefore, the current advances in electronics has resulted in the power industry being the biggest beneficiary of the growth in the adoption of electronics.

What needs to be done is for the industry to support and foster research on this subject in Africa, working as a global community. The challenge is creating electronics that meet these cost and power challenges. Importantly, the solution needs to be driven by the semiconductor industry not the power industry. Focus is to be placed on operating in an off-grid environment and building sustainable solutions to the continued challenge of the absence of reliable and available power.

It is my contention that Africa, as it has done with the mobile communications industry and adoption of LED lighting, will leapfrog in terms of developing and adopting low powered and cost effective electronics.

Jo De Boeck, senior VP and CTO, IMEC, discussed Game-Changing Technology Roadmaps For Lifescience. Jo De Boeck

Personalized, preventive, predictive and participatory healthcare is on the horizon. Many nano-electronics research groups have entered the quest for more efficient health care in their mission statement. Electronic systems are proposed to assist in ambulatory monitoring of socalled ‘markers’ for wellness and health.

New life science tools deliver the prospect of personal diagnostics and therapy in e.g., the cardiac, neurological and oncology field. Early diagnose, detailed and fast screening technology and companioning devices to deliver the evidence of therapy effectiveness could indeed stir a – desperately needed – healthcare revolution. This talk addresses the exciting trends in ‘PPPP’ health care and relates them to an innovation roadmap in process technology, electronic circuits and system concepts.
Read more…

%d bloggers like this: