Archive

Archive for the ‘SiC’ Category

Focus on SiC power electronics business 2020


SiC is implemented in several power systems and is gaining momentum and credibility.

Yole Developpement stays convinced that the most pertinent market for SiC lands in high and very high voltage (more than 1.2kV), where applications are less cost-driven and where few incumbent technologies can’t compete in performance. This transition is on its way as several device/module makers have already planned such products at short term.

Even though EV/HEV skips SiC, the industry could expand among other apps. The only question remains: Is there enough business to make so many contenders live decently? Probably, yes, as green-techs are expanding fast, strongly requesting SiC. Newcomers should carefully manage strategy and properly size capex according to the market size.

Source: Yole Developpement, France.

Source: Yole Developpement, France.

Power electronics industry outlook
Electronics systems were worth $122 billion in 2012, and will likely grow to $144 billion by 2020 at a CAGR of 1.9 percent. Power inverters will grow from $41 billion in 2012 to over $70 billion by 2020 at a CAGR of 7.2 percent. Semiconductor power devices (discretes and modules) will grow from $12.5 billion in 2012 to $21.9 billion by 2020 at a CAGR of 7.9 percent. Power wafers will grow $912 million in 2012 to $1.3 billion by 2020 at a CAGR of 5.6 percent.

Looking at the power electronics market in 2012 by application and the main expectations to 2015, computer and office will account for 25 percent, industry and energy 24 percent, consumer electronics 18 percent, automotive and transport 17 percent, telecom 7 percent and others 9 percent.

The main trends expected for 2013-2015 are:
* Significant increase of automotive sector following EV and HEV ramp-up.
* Renewable energies and smart-grid implementation will drive industry sector ramp-up.
* Steady erosion of consumer segment due to pressure on price (however, volumes (units) will keep on increase).

The 2011 power devices sales by region reveals that overall, Asia is still the landing-field for more than 65 percent of power products. Most of the integrators are located in China, Japan or Korea. Europe is very dynamic as well with top players in traction, grid, PV inverter, motor control, etc. Asia leads with 39 percent, followed by Japan with 27 percent, Europe with 21 percent and North America with 13 percent.

The 2011 revenues by company/headquarter locations reveals that the big-names of the power electronics industry are historically from Japan. Nine companies of the top-20 are Japanese. There are very few power manufacturers in Asia except in Japan. Europe and US are sharing four of the top five companies. Japan leads with 42 percent, followed by Europe and North America with 28 percent each, respectively, and Asia with 2 percent.

Looking at the TAM comparison for SiC (and GaN), very high voltage, high voltage of 2kV and medium voltage of 1.2kV appear as a more comfortable area for SiC. The apps are less cost-driven and SiC added value is obvious. Low voltage from 0-900V is providing strong competition with traditional silicon technologies, SJ MOSFET and GaN. There are cost-driven apps.
Read more…

Status of power semiconductor devices industry

December 3, 2012 2 comments

Power2There are more available solutions than ever in power devices, according to Alexandre Avron, market and technology analyst, Yole Développement. The landscape is moving, and its moving quite fast, from every region of the world.

There are many opportunities for power device manufacturers. This is the time for strong strategic planning and making the best choices. He was speaking at a seminar on the power semiconductor devices industry, in Lyon, France.

IGBTs and SJ MOSFETs
Silicon is not dead and will still live for a long time. Standard device design are slowly disappearing (planar IGBT, planar MOSFET). IGBT and SJ MOS are highly mature technologies. Rules of competition are evolving.

Historic players need to keep on innovating. New entrants have a different business model: there are more and more foundries, with fab-less and fab-light players. IGBT is still a key asset: master and secure IGBT supply is necessary for system makers. SJ MOSFETS will be used in more and more systems, taking market shares to planar MOSFET.

About SiC and GaN, there is still a big question mark: Where and when? With time, it is becoming clearer. SiC will target medium and Power3high power. From our point of view, medium power (1200V base) is a mean to arrive to high power (+3.3kV). R&D has to go through this to reach higher voltage. The main issue is still on current ratings (having a high impact on cost).

GaN will target low and medium power, and will probably allow extraordinary power supplies designs (Tiny supplies, very high frequency systems). It is almost ready for 600V, but not yet at 1200V. It leaves room for SiC to develop and expand.  Major players are involved on both fields — SiC and GaN. They need to be present on both domains, as there will be an overlap, but the split is unclear: we will probably experience a very fine segmentation, not only by voltage or current, but also by frequency, ruggedness, system size, temperature of operation or maybe culture or history.

SiC is now here. First full SiC PV inverters are available. First field tests for SiC in rail traction is ongoing. GaN is under qualification. According to the most advanced players, 600V GaN devices samples are tested by system makers.
Read more…

%d bloggers like this: