Archive for the ‘semiconductor industry’ Category

How Intel competes on today’s fabless ecosystem?

The SEMI/Gartner Market Symposium was held Semicon West 2014 at San Francisco, on July 7. Am grateful to Ms. Becky Tonnesen, Gartner, and Ms Agnes Cobar, SEMI, for providing me the presentations. Thanks are also due to Ms Deborah Geiger, SEMI.

Dean Freeman, research VP, Gartner, outlined the speakers:

• Sunit Rikhi, VP, Technology and Manufacturing Group, GM, Intel Custom Foundry Intel, presented on Competing in today’s Fabless Ecosystem.

• Bob Johnson, VP Research, Gartner, presented the Semiconductor Capital Spending Outlook.

• Christian Gregor Dieseldorff, director Market Research, SEMI, presented the SEMI World Fab Forecast: Analysis and Forecast for Fab Spending, Capacity and Technology.

• Sam Wang, VP Research Analyst, Gartner, presented on How Foundries will Compete in a 3D World.

• Jim Walker, VP Research, Gartner, presented on Foundry versus SATS: The Battle for 3D and Wafer Level Supremacy.

• Dr. Dan Tracy, senior director, Industry Research & Statistics, SEMI, presented on Semiconductor Materials Market Outlook.

Let’s start with Sunit Rikhi at Intel.

As a new player in the fabless eco-system, Intel focuses on:
* The value it brings to the table.
* How it delivers on platforms of capability and services.
* How it leverage the advantages of being inside the world’s leading Integrated Device Manufacturer (IDM)
* How it face the challenges of being inside the world’s leading IDM.

Intel sunit-rikhiIntel has leadership in silicon technologies. Transistor performance per watt is the critical enabler for all. Density improvements offset wafer cost trends. Intel currently has ~3.5-year lead in introducing revolutionary transistor technologies.

In foundry capabilities and services platforms, Intel brings differentiated value on industry standard platforms. 22nm was started in 2011, while 14nm was started in 2013. 10nm will be starting in 2015. To date, 125 prototype designs have been processed.

Intel offers broad capability and services on industry standard platforms. It also has fuller array of co-optimized end-to-end services. As for the packaging technology, Intel has been building better products through
multi-component integration. Intel has also been starting high on the yield learning curve.

Regarding IDM challenges, such as high-mix-low-volume configuration, Intel has been doing configuration optimization in tooling and set-up. It has also been separating priority and planning process for customers. Intel has been providing an effective response for every challenge.

Some of Intel Custom Foundry announced customers include Achronix, Altera, Microsemi, Netronome, Panasonic and Tabula.

Global semicon industry trends in 2014: Analog Devices

Sam Fuller

Sam Fuller

I recently met Sam Fuller, CTO, Analog Devices, and had an interesting conversation. First, I asked him about the state of the global semicon industry in 2013.

Industry in 2013
He said: “Due to the uncertainties in the global economy in the last couple of years, the state of the global semiconductor industry has been quite modest growth. Because of the modest growth, there has been a buildup in demand. As the global economies begin to be more robust going forward, we expect to see more growth.”

Industry in 2014?
How does Analog Devices see the industry going forward in 2014? What are the five key trends?

He added: “I would talk about the trends more from an eco-system and applications perspective. Increased capability on a single chip: Given all the advances to Moore’s law, the capability of a chip has increased considerably in all dimensions and not just performance, be it the horsepower we see in today’s smartphones or the miniaturization and power consumption of wearable gadgets that were on show this year at CES.

“In Analog Devices’ case, as we are focused on high performance signal processing, we can put more of the entire signal chain on a single die. For our customers, the challenge is to provide their customers a more capable product which means a more complex product, but with a simpler interface.

“A classic example is our AD9361 chip, which is a single chip wideband radio transceiver for Software Defined Radio (SDR). It is a very capable ASSP (Application Specific Standard Products) as well as RF front end with a wide operating frequency of 70 MHz to 6 GHz.

“This chip, coupled with an all-purpose FPGA, can build a very flexible SDR operating across different radio protocols, wide frequency range and bandwidth requirements all controlled via software configuration. It finds a number of applications in wireless communication infrastructure, small cell Base stations as well as a whole range of custom radios in the industrial and aerospace businesses.”

Now, let’s see the trends for 2014!

More collaboration with customers: There is a greater emphasis on understanding customers’ end applications to provide a complete signal chain, all in a System on a Chip (SoC) or a System in a package (SiP). The relationship with our customers is changing as we move more towards ASSPs focused with few lead customers for target markets and target applications. While this has already been ongoing in the consumer industry with PCs and laptops, customers in other vertical markets like healthcare, automotive and industrial are and will collaborate more with semiconductor companies like Analog Devices to innovate at a solutions level.

More complete products: We have evolved from delivering just the silicon at a component level to delivering more complete products with more advanced packaging for various 3D chips or multi-die within a package. Our solutions now have typically much more software that makes it easier to configure or program the chips. It is a solution that is a combination of more advanced silicon, advanced packaging and more appropriate software.

With providing the complete solution, the products are more application specific and hence, the need for more collaboration with customers. For example, there may be one focused on Software Defined Radio, one for motor control, and one for vital signs monitoring for consumer health that we have launched recently.

We need it to be generic enough that multiple customers can use it, but it needs to be as tailored as possible to the customers’ needs for specific market segments. While because of the volume and standardization, availability of complete reference designs in the consumer world has been the norm, other market segments are demanding more complete products not-withstanding the huge variation in protocols and applications.

Truly global industry: The semiconductor and electronics industry has become truly global, so multiple design sites around the globe collaborate to create products. For example for Analog Devices, one of our premier design sites is our Bangalore product design center where we quite literally developed our most complex and capable chips. At the same time our customers are also global.

We see large multinational companies like GE, Honeywell, Cisco, Juniper, ABB, Schneider and many of our top strategic customers globally doing substantial system design work in Bangalore along with a multitude of India design houses. Our fastest growing region is in Asia, but we have substantial engagement with customers in North America and Europe. And our competition is also global, which means that the industry is ever moving faster as the competition is global.

Smarter design tools: The final trend worth talking about is the need for smarter design tools.  As our products and our customers’ products become more complex and capable, there have to be rapidly developing design tools, for us to design them.

This cannot be done by brute force but by designing smarter and better tools. There is a lot of innovation that goes on in developing better tool suites. There is also ever more capable software that caters to a market moving from 100s of transistors to literally billions of transistors for an application.

3D remains central theme for Applied in 2014!

Om Nalamasu

Om Nalamasu

Following a host of forecasts for 2014, it is now the turn of Applied Materials with its forecast for the year. First, I asked Om Nalamasu, senior VP, CTO, Applied Materials regarding the outlook for the global semicon industry in 2014.

Semicon outlook 2014
He said that Gartner expects the semiconductor industry to grow in mid-single digits to over $330 billion in 2014.

“In our industry – the semiconductor wafer fab equipment sector – we are at the beginning of major technology transitions, driven by FinFET and 3D NAND, and based a wide range of analyst projections, wafer fab equipment investment is expected to be up 10-20 percent in 2014. We expect to see a year-over-year increase in foundry, NAND, and DRAM investment, with logic and other spending flat to down.”

Five trends for 2014
Next, what are the top five trends likely to rule the industry in 2014?

Nalamasu said that the key trends continuing to drive technology in 2014 and beyond include 3D transistors, 3D NAND, and 3D packaging. 3D remains a central theme. In logic, foundries will ramp to 20nm production and begin early transition stages to3D finFET transistors.

With respect to 3D NAND, some products will be commercially available, but most memory manufacturers plan to crossover from planar NAND to vertical NAND starting this year. In wafer level packaging, critical mechanical and electrical characterization work is bringing the manufacturability of 3D-integrated stacked chips closer to reality.

These device architecture inflections require significant advances in precision materials engineering. This spans such critical steps as precision film deposition, precision materials removal, materials modification and interface engineering. Smaller features and atomic-level thin films also make interface engineering and process integration more critical than ever.

Driving technology innovations are mobility applications which need high performance, low power semiconductors. Smartphones, smart watches, tablets and wearable gadgets continue to propel industry growth. Our customers are engaged in a fierce battle for mobility leadership as they race to be the first to market with new products that improve the performance, battery-life, form-factor and user experience of mobile devices.

How is the global semiconductor industry managing the move to the sub 20nm era?

He said that extensive R&D work is underway to move the industry into the sub-20nm realm. For the 1x nodes, more complex architectures and structures as well as new higher performance materials will be required.

Some specific areas where changes and technology innovations are needed include new hard mask and channel materials, selective material deposition and removal, patterning, inspection, and advanced interface engineering. For the memory space, different memory architectures like MRAM are being explored.

FinFETs in 20nm!
By the way, have FinFETs gone to 20nm? Are those looking for power reduction now benefiting?

FinFET transistors are in production in the most advanced 2x designs by a leading IDM, while the foundries are in limited R&D production. In addition to the disruptive 3D architecture, finFET transistors in corporate new materials such as high-k metal gate (HKMG) that help to drastically reduce power leakage.

Based on public statements, HKMG FinFET designs are expected to deliver more than a 20 percent improvement in speed and a 30 percent reduction in power consumption compared to28nm devices. These are significant advantages for mobile applications.

Status of 3D ICs
Finally, what’s the status with 3D ICs? How is Applied helping with true 3D stacking integration?

Nalamasu replied that vertically stacked 3D ICs are expected to enter into production first for niche applications. This is due primarily to the higher cost associated with building 3D wafer-level-packaged (WLP) devices. While such applications are limited today, Applied Materials expects greater utilization and demand to grow in the future.

Applied is an industry leader in WLP, having spear-headed the industry’s development of through silicon via (TSV) technology. Applied offers a suite of systems that enable customers to implement a variety of packaging techniques, from bumping to redistribution layer (RDL) to TSV. Because of work in this area, Applied is strongly positioned to support customers as they begin to adopt this technology.

To manufacture a robust integrated 3D stack, several fundamental innovations are needed. These include improving defect density and developing new materials such as low warpage laminates and less hygroscopic dielectrics.

Another essential requirement is supporting finer copper line/spacing. Important considerations here are maintaining good adhesion while watching out for corrosion. Finally, for creating the necessary smaller vias, the industry needs high quality laser etching to replace mechanical drilling techniques.

Top five trends likely to rule global semicon industry in 2014

Rich Goldman

Rich Goldman

What are the top five trends likely to rule the semicon industry in 2014 and why? Rich Goldman, VP, corporate marketing and strategic alliances, Synopsys, had this to say.

FinFETs will be a huge trend through 2014 and beyond. Semiconductor companies will certainly keep us well informed as they progress through FinFET tapeouts and ultimately deliver production FinFET processes.

They will tout the power and speed advantages that their FinFET processes deliver for their customers, and those semiconductor companies early to market with FinFETs will press their advantage by driving and announcing aggressive FinFET roadmaps.

IP and subsystems
As devices grow more complex, integrating third-party IP has become mainstream. Designers recognize as a matter of course that today’s complex designs benefit greatly from integrating third-party IP in such areas as microprocessors and specialized I/Os.

The trend for re-use is beginning to expand upwards to systems of integrated, tested IP so that designers no longer need to redesign well-understood systems, such as memory, audio and sensor systems.

Internet of Things/sensors
Everybody is talking about the Internet of Things for good reason. It is happening, and 2014 will be a year of huge growth for connected things. Sensors will emerge as a big enabler of the Internet of Things, as they connect our real world to computation.

Beyond the mobile juggernaut, new devices such as Google’s (formerly Nest’s) thermostat and smoke detector will enter the market, allowing us to observe and control our surrounding environment remotely.

The mobile phone will continue to subsume and disrupt markets, such as cameras, fitness devices, satellite navigation systems and even flashlights, enabled by sensors such as touch, capacitive pattern, gyroscopic, accelerometers, compasses, altimeters, light, CO, ionization etc. Semiconductor companies positioned to serve the Internet of Things with sensor integration will do well.

Systems companies bringing IC design in-house
Large and successful systems companies wanting to differentiate their solutions are bringing IC specification and/or design in house. Previously, these companies were focused primarily on systems and solutions design and development.

Driven by a belief that they can design the best ICs for their specific needs, today’s large and successful companies such as Google, Microsoft and others are leading this trend, aided by IP reuse.

Advanced designs at both emerging and established process nodes  
While leading-edge semiconductor companies drive forward on emerging process nodes such as 20nm, others are finding success by focusing on established nodes (28nm and above) that deliver required performance at reduced risk. Thus, challenging designs will emerge at both ends of the spectrum.

Part II of this discussion will look at FinFETs below 20nm and 3D ICs.

Can 2014 be a major year for global semicon industry?

The year 2014 is expected to be a major year for the global semiconductor industry. The industry will and continue to innovate!

Apparently, there are huge expectations from certain segments such as the so-called Internet of Things (IoT) and wearable electronics. There will likely be focus on the connected car. Executives have been stating there could be third parties writing apps that can help cars. Intel expects that technology will be inspiring optimism for healthcare in future. As per a survey, 57 percent of people believe traditional hospitals will be obsolete in the future.

Some other entries from 2013 include Qualcomm, who introduced the Snapdragon 410 chipset with integrated 4G LTE world mode for high-volume smartphones. STMicroelectronics joined ARM mbed project that will enable developers to create smart products with ARM-based industry-leading STM32 microcontrollers and accelerate the Internet of Things.

A look at the industry itself is interesting! The World Semiconductor Trade Statistics Inc. (WSTS) is forecasting the global semiconductor market to be $304 billion in 2013, up 4.4 percent from 2012. The market is expected to recover throughout 2013, driven mainly by double digit growth of Memory product category. By region, all regions except Japan will grow from 2012. Japan market is forecasted to decline from 2012 in US dollar basis due to steep Japanese Yen depreciation compared to 2012.

WSTS estimates that the worldwide semiconductor market is predicted to grow further in 2014 and 2015. According to WSTS, the global semiconductor market is forecasted to be up 4.1 percent to $317 billion in 2014, surpassing historical high of $300 billion registered in 2011. For 2015, it is forecasted to be $328 billion, up 3.4 percent.

All product categories and regions are forecasted to grow positively in each year, with the assumption of macro economy recovery throughout the forecast period. By end market, wireless and automotive are expected to grow faster than total market, while consumer and computer are assumed to remain stagnant.

Now, all of this remains to be seen!

Earlier, while speaking with Dr. Wally Rhines of Mentor, and Jaswinder Ahuja of Cadence, both emphasized the industry’s move to 14/16nm. Xilinx estimates that 28nm will have a very long life. It also shipped the 20nm device in early Nov. 2013.

In a 2013 survey, carried out by KPMG, applications markets identified as most important by at least 55 percent of the respondents were: Mobile technology – 69 percent; Consumer – 66 percent; Computing – 63 percent; Alternative/Renewal Energy – 63 percent; Industrial – 62 percent; Automotive – 60 percent; Medical – 55 percent; Wireline Communications – 55 percent.

Do understand that there is always a line between hope and forecasts, and what the end result actually turns out to be! In the meantime, all of us continue to live with the hope that the global semiconductor will carry on flourishing in the years to come. As Brian Fuller, Cadence, says, ‘the future’s in our hands; let’s not blow it!’

Round-up 2013: Best of semiconductors, electronics and solar

Virtex UltraScale device.

Virtex UltraScale device.

Friends, here’s a review of 2013! There have been the usual hits and misses, globally, while in India, the electronics and semiconductor industries really need to do a lot more! Enjoy, and here’s wishing everyone a Very Happy and Prosperous 2014! Be safe and stay safe!!

DEC. 2013
What does it take to create Silicon Valley!

How’s global semicon industry performing in sub-20nm era?

Xilinx announces 20nm All Programmable UltraSCALE portfolio

Dr. Wally Rhines: Watch out for 14/16nm technologies in 2014!

Outlook 2014: Xilinx bets big on 28nm

NOV. 2013
Indian electronics scenario still dull: Leaptech

Connecting intelligence today for connected world: ARM

India poses huge opportunity for DLP: TI

SEMICON Europa 2013: Where does Europe stand in 450mm path?

OCT. 2013
Apple’s done it again, wth iPad Air!

IEF 2013: New markets and opportunities in sub-20nm era!

SEPT. 2013
ST intros STM32F4 series high-performance Cortex-M4 MCUs

Great, India’s having fabs! But, is the tech choice right?



Now, India to have two semicon fabs!

Higher levels of abstraction growth area for EDA

AUG. 2013
Moore’s Law could come to an end within next decade: POET

What’s happening with 450mm: G450C update and status

300mm is the new 200mm!

JULY 2013
Xilinx tapes-out first UltraScale ASIC-class programmable architecture

JUNE 2013
EC’s goal: Reach 20 percent share in chip manufacturing by 2020!
Read more…

What does it take to create Silicon Valley!

December 29, 2013 1 comment

I was pointed out to a piece of news on TV, where a ruling chief minister of an Indian state apparently announced that he could make a particular state of India another Silicon Valley! Interesting!!

First, what’s the secret behind Silicon Valley? Well, I am not even qualified enough to state that! However, all I can say is: it is probably a desire to do something very different, and to make the world a better place – that’s possibly the biggest driver in all the entrepreneurs that have come to and out of Silicon Valley in the USA.

If you looked up Wikipedia, it says that the term Silicon Valley originally referred to the region’s large number of silicon chip innovators and manufacturers, but eventually, came to refer to all high-tech businesses in the area, and is now generally used as a metonym for the American high-technology sector.

So, where exactly is India’s high-tech sector? How many Indian state governments have even tried to foster such a sector? Ok, even if the state governments tried to foster, where are the entrepreneurs? Ok, an even easier one: how many school dropouts from India or even smal-time entrepreneurs have even made a foray into high-tech?

Right, so where are the silicon chip innovators from India? Sorry, I dd not even hear a word that you said? Can you speak out a little louder? It seems there are none! Rather, there has been very little to no development in India, barring the work that is done by the MNCs. Correct?
hsinchuOne friend told me that Bangalore is a place that can be Silicon Valley. Really? How?? With the presence of MNCs, he said! Well, Silicon Valley in the US does not have MNCs from other countries, are there? Let’s see! Some companies with bases in Silicon Valley, listed on Wikipedia, include Adobe, AMD, Apple, Applied Materials, Cisco, Facebook, Google, HP, Intel, Juniper, KLA-Tencor, LSI, Marvell, Maxim, Nvidia, SanDisk, Xilinx, etc.

Now, most of these firms have setups in Bangalore, but isn’t that part of the companies’ expansion plans? Also, I have emails and requests from a whole lot of youngsters asking me: ‘Sir, please advice me which company should I join?’ Very, very few have asked me: ‘Sir, I have this idea. Is it worth exploring?’

Let’s face the truth. We, as a nation, so far, have not been one to take up challenges and do something new. The ones who do, or are inclined to do so, are working in one of the many MNCs – either in India or overseas.

So, how many budding entrepreneurs are there in India, who are willing to take the risk and plunge into serious R&D?

It really takes a lot to even conceive a Silicon Valley. It takes people of great vision to build something of a Silicon Valley, and not the presence of MNCs.

Just look at Hsinchu, in Taiwan, or even Shenzhen, in China. Specifically, look up Shenzhen Hi-Tech Industrial Park and the Hsinchu Science Park to get some ideas.

SEMICON Europa 2013: Where does Europe stand in 450mm path?

SEMICON Europa was recently held in Dresden, Germany on Oct. 8-10, 2013. I am extremely grateful to Malcolm Penn, chairman and CEO, Future Horizons for sharing this information with me.

Semicon Europa 2013SEMICON Europa included a supplier exhibition where quite a few 450mm wafers were on display. One highlight was a working 450mm FOUP load/unload mechanism, albeit from a Japanese manufacturer. These exhibits did illustrate though that 450mm is for real and no longer a paper exercise.  There was also a day-long conference dedicated to 450mm in the largest room. This was crowded throughout the time and a large number of papers were given.

Paul Farrar of G450C began with a presentation about Supply Chain Collaboration for 450mm. His key message was there are 25 different tools delivered to G450C of which 15 are installed in the NFN cleanroom. This number will grow to 42 onsite and 19 offsite by Q1 2015.

He stated that Nikon aims to have a working 193i litho machine in 2H 2014 and install one in Albany in 1H 2015. Farrar also reported a great improvement in wafer quality which now exceed the expected M76 specification, and prime wafers to the M1 spec should be available in Q3 2014. There has also been good progress on wafer reclaim and it is hoped some wafers can be reused up to 10 times, although at least three is the target.

Metrology seems to be one of the most advanced areas with eight different machines already operational. The number of 450mm wafers in their inventory now stands at over 10,000 with these moving between the partners more rapidly. It was immediately noticeable from Farrar’s speech that G450C is now recognising the major contribution Europe is making to 450mm and is looking for more collaborations.

Facilities part of F450C
Peter Csatary of M&W then dealt with the facilities part of G450C, known as F450C. This group consists of:
• M&W (co-ordination)
• Edwards
• Swagelok
• Mega Fluid Systems
• Ovivo
• Haws Corp.
• Air Liquide
• Ceres Technlogies
• CS Clean Systems

F450C is seen as streamlining communications with the semiconductor companies and their process tool suppliers. The group will focus on four key areas, namely Environmental Footprint, Facility Interface Requirements, Cost and Duration, and Safety and Sustainability.

One interesting point raised was that 450mm equipment is inherently more massive and one suggestion has been that ceiling mounted cranes will be required to install and remove equipment. This of course means that fab roofs would need to be stronger than previously. This topic was discussed at the latest F450C meeting subsequent to this conference.

Another new concept is that of a few standardised 3D templates and adapter plates to allow fab services to be pre-installed before the equipment is placed. An interesting point made elsewhere by M&W is that the current preference is to place a fab where there are already other fabs in existence so that the infrastructure to transport products, materials and services is already in place, as are basic utilities such as power, natural gas and water supply.

However, the scale of the expected utility demand at 450 mm ups the stakes as for example a large 300 mm facility uses about 4 million gallons of water per day, whereas a 450 mm fab will use almost double that, putting immense strain on a location’s infrastructure should there be other fabs in the region. This could affect future site selections.

An outcome of this phenomenon is that the reduction, reclaim and re-use of materials will no longer be driven only by the desire to be a good corporate citizen, but will also be driven by cost control and to ensure availability of required resources such as power, water, specialty gases and chemicals.
Read more…

Apple’s done it again, wth iPad Air!

October 22, 2013 1 comment

iPad Air

iPad Air

Today, at San Francisco, Apple introduced the iPad Air that features a 9.7-inch Retina display in a new thinner and lighter design!

Earlier, yesterday, in India, Samsung announced the GALAXY Note 10.1! However, it isn’t any match for the iPad Air!!

The release says that precision-engineered to weigh just one pound, the iPad Air is now 20 percent thinner and 28 percent lighter than the fourth generation iPad, and with a narrower bezel the borders of iPad Air are dramatically thinner-making content even more immersive.

Apple also introduced the new iPad mini featuring Retina display and 64-bit Apple-designed A7 chip.

The iPads feature two antennae to support Multiple-In-Multiple-Out (MIMO) technology, thus bringing twice the Wi-Fi performance to iPad Air and iPad mini with Retina display at a blazingly fast data rate up to 300 Mbps. The fact that Apple will be offering 128GB for both the models shows that it really means business!

And, what will it do to Apple’s business? Well, there will definitely be many more buyers for sure. Gosh, what will I do? I have a third-gen iPad and this is a fifth-gen model! Never mind! All the best to those who would be buying the iPad Air!

Besides the iPad Air, there were some other announcements made by Apple. First, Apple introduced the next gen iWork and iLife apps for OS X, as well as the OS X Mavericks, which is now available free from Mac App store. Apple also introduced the all new Mac Pro! Brilliant!

ST intros STM32F4 series high-performance Cortex-M4 MCUs

STMicroelectronics has introduced the STM32F4 series STM32 F4x9 and STM32F401, which are high-performance Cortex-M4 microcontrollers (MCUs).

On the growth drivers for GP MCUs, the market growth is driven by faster migration to 32 bit platform. ST has been the first to bring the ARM Cortex based solution, and now targets leadership position on 32bit MCUs. An overview of the STM32 portfolio indicates high-performance MCUs with DSP and FPU up to 608 CoreMark and up to180 MHz/225 DMIPS.

Features of the STM32F4 product lines, specifically, the STM32F429/439, include 180 MHz, 1 to 2-MB Flash and 256-KB SRAM. The low end STM32F401 has features such as 84 MHz, 128-KB to 256-KB Flash and 64-KB SRAM.

The STM32F401 provides thebest balance in performance, power consumption, integration and cost. The STM32F429/439 is providing more resources, more performance and more features. There is close pin-to-pin and software compatibility within the STM32F4
series and STM32 platform.

The STM32 F429-F439 high-performance MCUs with DSP and FPU are:
• World’s highest performance Cortex-M MCU executing from Embedded Flash, Cortex-M4 core with FPU up to 180 MHz/225 DMIPS.
• High integration thanks to ST 90nm process (same platform as F2 serie): up to 2MB Flash/256kB SRAM.
• Advanced connectivity USB OTG, Ethernet, CAN, SDRAM interface, LCD TFT controller.
• Power efficiency, thanks to ST90nm process and voltage scaling.

In terms of providing more performance, the STM32F4 provides up to 180 MHz/225 DMIPS with ART Accelerator, up to 608 CoreMark result, and ARM Cortex-M4 with floating-point unit (FPU).

The STM32F427/429 highlights include:
• 180 MHz/225 DMIPS.
• Dual bank Flash (in both 1-MB and 2-MB), 256kB SRAM.
• SDRAM Interface (up to 32-bit).
• LCD-TFT controller supporting up to SVGA (800×600).
• Better graphic with ST Chrom-ART Accelerator:
— x2 more performance vs. CPU alone
— Offloads the CPU for graphical data generation
* Raw data copy
* Pixel format conversion
* Image blending (image mixing with some transparency).
• 100 μA typ. in Stop mode.

Some real-life examples of the STM32F4 include the smart watch, where it is the main application controller or sensor hub, the smartphone, tablets and monitors, where it is the sensor hub for MEMS and optical touch, and the industrial/home automation panel, where it is the main application controller. These can also be used in Wi-Fi modules for the Internet of Things (IoT), such as appliances, door cameras, home thermostats, etc.

These offer outstanding dynamic power consumption thanks to ST 90nm process, as well as low leakage current made possible by advanced design technics and architecture (voltage scaling). ST is making a large offering of evaluation boards and Discovery kits. The STM32F4 is also offering new firmware libraries. SEGGER and ST signed an agreement around the emWin graphical stack. The solution is called STemWin.

%d bloggers like this: