Archive

Posts Tagged ‘Semiconductors’

Are we about to reach end of Moore’s Law?


Here is the concluding part of my discussion with Sam Fuller, CTO, Analog Devices. We discussed the technology aspects of Moore’s Law and

Sam Fuller

Sam Fuller

‘More than Moore’, among other things.

Are we at the end of Moore’s Law?
First, I asked Fuller that as Gordon Moore suggested – are we about to reach the end of Moore’s Law? What will it mean for personal computing?

Fuller replied: “There is definitely still life left in Moore’s law, but we’re leaving the golden age after the wonderful ride that we have had for the last 40 years. We will continue to make chips denser, but it is becoming difficult to continue to improve the performance as well as lower the power and cost.

“Therefore, as Moore’s law goes forward, more innovation is required with each new generation. As we move from Planer CMOS to FinFET (a new technology for multi-gate architecture of transistors); from silicon to more advanced materials Moore’s law will still have life for the next decade, but we are definitely moving into its final stages.

“For personal computing, there is still a lot of innovation left before we begin to run out of ideas. There will continue to be great advances in smart phones, mobile computing and tablets because software applications are really just beginning to take advantage of the phenomenal power and capacity of today’s semiconductors. The whole concept of ‘Internet of things’ will also throw up plenty of new opportunities.

“As we put more and more sensors in our personal gadgets, in factories, in industries, in infrastructures, in hospitals, and in homes and in vehicles, it will open up a completely new set of applications. The huge amount of data generated out of these sensors and wirelessly connected to the Internet will feed into the big data and analytics. This would create a plethora of application innovations.”

What’s happening in the plane?
The plane opportunity – 90nm – 65nm – 45nm – 22nm – 20nm – 14/18nm – is starting to get difficult and probably won’t work at 12nm, for purely physics reasons. What is Analog Devices’ take on this?

Fuller said: “You are right! We have been going from 45 nm down to lower nodes, it’ll probably go down to 10 nm, but we are beginning to run into some fundamental physics issues here. After all, it’s a relatively finite number of atoms that make up the channels in these transistors. So, you’re going to have to look at innovations beyond simply going down to finer dimensions.

“There are FinFETS and other ways that can help move you into the third dimension. We’re getting to a point where we can put a lot of complexity and a number of functions on a single die. We have moved beyond purely digital design to having more analog and mixed signal components in the same chip. There are also options such as stacked dies and multiple dies.

“Beyond integration on a single chip, Analog Devices leads in advanced packaging technologies for System in a Package (SiP) where sensors, digital and analog/mixed signal components are all in a single package as the individual components would typically use different technology nodes and it might not be practical to do such integration on a single die.

“So, the challenge often gets described as “More than Moore”, which is going beyond Moore’s law, bringing those capabilities to do analog processing as well as digital and then integrating sensors for temperature sensing, pressure sensing, motion sensing and a whole range of sensors integrated for enabling the ‘Internet of Things’.

“At Analog Devices, we have the capability in analog as well as digital, and having worked for over 20 years on MEMS devices, we are particularly well positioned as we get into ‘More than Moore’.”
Read more…

STMicro intros M24SR dynamic NFC/RFID tag


Amit Sethi

Amit Sethi

STMicroelectronics recently introduced the M24SR dynamic NFC/RFID tag.

Speaking about the USP of the M24SR, Amit Sethi, Product Marketing manager – Memories and RFID, STMicroelectronics India, said: “The unique selling proposition of the M24SR product is its two interfaces, giving users and applications the ability to program or read its memory using either an RF NFC interface or a wired I2C interface, in an affordable and easy-to-use device for a wide range of applications such as consumer/home appliance, OTP card, healthcare/wellness and industrial/smart meter.”

Let us see how the M24SR is beneficial for smartphone or any other audio device.

The M24SR is a dynamic NFC/RFID tag that manages the data exchange between the NFC phone and the microcontroller. The main use cases for data exchange are updating user settings, downloading data logs, and remote programming and servicing. The dynamic tag also enables seamless Bluetooth and Wi-Fi pairing, which is useful in, for example, audio devices.

How is the M24SR different from other products of the same segment?

Sethi said that the key difference is the dual interface: the M24SR memory can be accessed either by a low-power 2C interface or

M24SR

M24SR

by an ISO14443A RF interface operating at 13.56MHz. It also features RF status (MCU wake-up) and RF disable functions to minimize power consumption. In addition, the devices support the NFC data exchange format (NDEF from NFC forum) and 128-bit password protection mechanism.

The M24SR series is available in EEPROM memory densities from 2 Kbit to 64 Kbit and three package types: SO8, TSSOP8, and UFDFPN8.

What are the contributions of M24SR toward the Internet of Things?

Accotding to him, the M24SR dynamic NFC/RFID tag interactive and zero power capability, simplifies complex communications setups and enables data exchange among the home automation, wearable electronics, home appliances, smart meter, wellness, etc.

Especially with the NFC capability, the M24SR is ideal for applications waiting for something, like a ticket or ID to launch an activity.

Relevance for India
Finally, what’s the relevance of the product for the Indian market?

Sethi added: “Mobile and NFC based application are gaining its popularity in India. M24SR is an easy-to-use and an affordable product for the Implementation of NFC-based applications in transportation, entertainment, and lifestyle areas.

As for the go-to-market strategy, the M24SR mass market launch is planned for end of February 2014. Some M24SR samples have been delivered to key customers during Q4 2013 and design/development is ongoing.

How’s global semicon industry performing in sub-20nm era?


Early this month, I caught up with Jaswnder Ahuja, corporate VP and MD, Cadence Desiign Systems India. With the global semiconductor industry having entered the sub-20nm era, there are a lot of things happening, and Cadence is sure to be present.

Performance in sub-2onm era
First, let’s see how’s the global semiconductor industry performing after entering the sub-20nm era.

Jaswinder Ahuja

Jaswinder Ahuja

Ahuja replied: “Increased demand for faster, smaller, low-power chips continues to drive the geometry shrink as one of the ways to manage the low-power, higher performance goals in smaller form factors—in other words, PPA is driving the move to advanced node design.

“At Cadence, we are seeing a lot of interest in the wireless space, which includes smartphones, tablets, and consumer devices. In this market, you must support different standards, the device must be really fast, it must have Internet access, and all this must be done at lower power so the that it does not drain the battery. We’re also seeing interest for advanced nodes in other segments such as computing and graphics processors.”

When speaking of advanced nodes, let’s also try and find out what Cadence is doing in helping achieve 10X faster power integrity analysis and signoff.

Cadence Voltus IC power integrity Solution is a full-chip, cell-level power signoff tool that provides accurate, fast, and high-capacity analysis and optimization technologies to designers for debugging, verifying, and fixing IC chip power consumption, IR drop, and electromigration (EM) constraints and violations.

The Voltus solution includes innovative technologies such as massively parallel execution, hierarchical architecture, and physically aware power grid analysis and optimization. Beneficial as a standalone power signoff tool, Voltus IC Power Integrity Solution delivers even more significant productivity gains when used in a highly integrated flow with other key Cadence products, providing the industry’s fastest design closure technology.

Developed with advanced algorithms and a new power integrity analysis engine with massively parallel execution, Voltus IC Power Integrity solution:
* Performs 10X faster than other solutions on the market.
* Supports very large designs—up to one billion instances—with its hierarchical architecture.
* Delivers SPICE-level accuracy.
* Enhances physical implementation quality via physically aware power integrity optimization.

Supported by major foundries and intellectual property (IP) providers, Voltus IC Power Integrity Solution has been validated and certified on advanced nodes processes such as 16nm FinFET and included in reference design flows such as for 3D-IC technology. Backed by Cadence’s rigorous quality control and product release procedures, the Voltus solution delivers best-in-class signoff quality on accuracy and stability for all process nodes and design technologies.

FinFETs to 20nm – are folks benefiting?
It is common news that FinFETs have gone to 20nm and perhaps, lower. Therefore, are those folks looking for power reduction now benefiting?

Ahuja replied that FinFETs allow semiconductor and systems companies to continue to develop commercially viable chips for the mobile devices that are dominating the consumer market. FinFETs enable new generations of high-density, high-performance, and ultra-low-power systems on chip (SoCs) for future smart phones, tablets, and other advanced mobile devices. Anyone who adopts FinFET technology will reap the benefits.

Foundry support for FinFETs will begin at 16nm and 14nm. In April of this year, Cadence announced a collaboration with ARM to implement the industry’s first ARM Cortex-A57 processor on TSMC’s 16nm FinFET manufacturing process. At ARM TechCon 2012, Cadence announced a 14nm test chip tapeout using an ARM Cortex-M0 processor and IBM’s FinFET process technology.
Read more…

SEMICON Europa 2013: Where does Europe stand in 450mm path?


SEMICON Europa was recently held in Dresden, Germany on Oct. 8-10, 2013. I am extremely grateful to Malcolm Penn, chairman and CEO, Future Horizons for sharing this information with me.

Semicon Europa 2013SEMICON Europa included a supplier exhibition where quite a few 450mm wafers were on display. One highlight was a working 450mm FOUP load/unload mechanism, albeit from a Japanese manufacturer. These exhibits did illustrate though that 450mm is for real and no longer a paper exercise.  There was also a day-long conference dedicated to 450mm in the largest room. This was crowded throughout the time and a large number of papers were given.

Paul Farrar of G450C began with a presentation about Supply Chain Collaboration for 450mm. His key message was there are 25 different tools delivered to G450C of which 15 are installed in the NFN cleanroom. This number will grow to 42 onsite and 19 offsite by Q1 2015.

He stated that Nikon aims to have a working 193i litho machine in 2H 2014 and install one in Albany in 1H 2015. Farrar also reported a great improvement in wafer quality which now exceed the expected M76 specification, and prime wafers to the M1 spec should be available in Q3 2014. There has also been good progress on wafer reclaim and it is hoped some wafers can be reused up to 10 times, although at least three is the target.

Metrology seems to be one of the most advanced areas with eight different machines already operational. The number of 450mm wafers in their inventory now stands at over 10,000 with these moving between the partners more rapidly. It was immediately noticeable from Farrar’s speech that G450C is now recognising the major contribution Europe is making to 450mm and is looking for more collaborations.

Facilities part of F450C
Peter Csatary of M&W then dealt with the facilities part of G450C, known as F450C. This group consists of:
• M&W (co-ordination)
• Edwards
• Swagelok
• Mega Fluid Systems
• Ovivo
• CH2MHILL
• Haws Corp.
• Air Liquide
• Ceres Technlogies
• CS Clean Systems

F450C is seen as streamlining communications with the semiconductor companies and their process tool suppliers. The group will focus on four key areas, namely Environmental Footprint, Facility Interface Requirements, Cost and Duration, and Safety and Sustainability.

One interesting point raised was that 450mm equipment is inherently more massive and one suggestion has been that ceiling mounted cranes will be required to install and remove equipment. This of course means that fab roofs would need to be stronger than previously. This topic was discussed at the latest F450C meeting subsequent to this conference.

Another new concept is that of a few standardised 3D templates and adapter plates to allow fab services to be pre-installed before the equipment is placed. An interesting point made elsewhere by M&W is that the current preference is to place a fab where there are already other fabs in existence so that the infrastructure to transport products, materials and services is already in place, as are basic utilities such as power, natural gas and water supply.

However, the scale of the expected utility demand at 450 mm ups the stakes as for example a large 300 mm facility uses about 4 million gallons of water per day, whereas a 450 mm fab will use almost double that, putting immense strain on a location’s infrastructure should there be other fabs in the region. This could affect future site selections.

An outcome of this phenomenon is that the reduction, reclaim and re-use of materials will no longer be driven only by the desire to be a good corporate citizen, but will also be driven by cost control and to ensure availability of required resources such as power, water, specialty gases and chemicals.
Read more…

Great, India’s having fabs! But, is the tech choice right?

September 13, 2013 2 comments

G450C

G450C

The government of India recently approved the setting up of two semiconductor wafer fabrication facilities in the country. It is expected to provide a major boost to the Indian electronics system design and manufacturing (ESDM) ecosystem. A look at the two proposals:

Jaiprakash Associates, along with IBM (USA) and Tower Jazz (Israel). The outlay of the proposed fab is about Rs. 26,300 crore for establishing the fab facility of 40,000 wafer starts per month of 300mm size, using advanced CMOS technology. Technology nodes proposed are 90nm, 65nm and 45nm nodes in phase I, 28nm node in phase II with the option of establishing a 22nm node in phase III. The proposed location is Greater Noida.

Hindustan Semiconductor Manufacturing Corp. (HSMC) along with ST Microelectronics (France/Italy) and Silterra (Malaysia). The outlay of the proposed fab is about Rs. 25,250 crore for the fab facility of 40,000 wafer starts per month of 300mm size, using advanced CMOS technology. Technology nodes proposed are 90nm, 65nm and 45nm nodes in phase I and 45nm, 28nm and 22nm nodes in phase II. The proposed location is Prantij, near Gandhinagar, Gujarat.

Now, this is excellent news for everyone interested in the Indian semiconductor industry.

One look at the numbers above tell me – NONE OF THESE are going to be 450mm fabs! Indeed, both will be 300mm fabs! After waiting for such a long time to even get passed by the Union Cabinet, are these 300mm fabs going to be enough for India? Is the technology choice even right for the upcoming wafer fabs in India? Let’s examine!

As you can probably see, both the projects have placed 22nm right at the very last phase! That’s very interesting!

Intel just showcased its Xeon processor E5-2600 v2 product family a few days back. I distinctly remember Intel’s Narendra Bhandari showing off the 22nm wafer sometime last week during a product launch!

For discussion’s sake, let’s say, a fab in India comes up by say, early 2015. Let’s assume that Phase 1 takes a full year. Which means, Phase 2, where 22nm node would be used, shall only be touched in 2016 or even beyond! Isn’t it? Where will the rest of the global industry be by then?

You are probably aware of the Global 450 Consortium or G450C, which has Intel, IBM, Samsung, GlobalFoundries and TSMC among its members.  What is the consortium currently doing? It is a 450mm wafer and equipment development program, which is leveraging on the industry and government investments to demonstrate 450mm process capabilities at the CNSE’s Albany Nanotech Complex. CNSE, also a consortium member, is the SUNY’s College of Nanoscale Science and Engineering!

So, what does all of this tell me?

One, these upcoming fabs in India will probably produce low- to mid-range chips, and some high-end ones at a later stage. Well, two, this does raise a question or two about India’s competitive advantage in the wafer fab space!  Three, there is lot of material on 450mm fabs, and some of that is available right here, on this blog! Have the Indian semiconductor industry folks paid enough attention to all that? I really have no idea!

Four, only the newer 300mm fabs built with higher ceilings and stronger floors will be able to be upgraded to 450mm, as presented by The Information Network’s Dr. Robert Castellano at the Semicon West 2013. Five, what are the likely alternative markets for 200mm and 300mm fabs? These are said to be MEMs and TSV, LEDs and solar PV. Alright, stop!

Perhaps, these product lines will be good for India and serve well, for now, but not for long!

Higher levels of abstraction growth area for EDA

September 1, 2013 2 comments

Dr. Ajoy Bose

Dr. Ajoy Bose

San Jose, USA-based Atrenta’s SpyGlass Predictive Analyzer gives engineers a powerful guidance dashboard that enables efficient verification and optimization of SoC designs early, before expensive and time-consuming traditional EDA tools are deployed. I recently met up with Dr. Ajoy Bose, chairman, president and CEO, Atrenta, to find out more.

I started by asking how Atrenta provides early design analysis for logic designers? He said: “The key ingredient is something we call predictive analysis. That is, we need to analyze a design at a high level of abstraction and predict what will happen when it undergoes detailed implementation. We have a rich library of algorithms that provide highly accurate ‘predictions’, without the time and cost required to actually send a design through detailed implementation.”

There’s a saying: electronic system level (ESL) is where the future of EDA lies. Why? Its because the lower level of abstraction (detailed implementation) of the EDA market is undergoing commoditization and consolidation. There are fewer solutions, and less differentiation between them. At the upper levels of abstraction (ESL), this is not the case. There still exists ample opportunity to provide new and innovative solutions.

Now, how will this help EDA to move up the embedded software space? According to Dr. Bose, the ability to do true hardware/software co-design is still not a solved problem. Once viable solutions are developed, then EDA will be able to sell to the embedded software engineer. This will be a new market, and new revenue for EDA.

How are SpyGlass and GenSys platforms helping the industry? What problems are those solving? Dr. Ajoy Bose said: “SpyGlass is Atrenta’s platform for RTL signoff. It is used by virtually all SoC design teams to ensure the power, performance and cost of their SoC is as good as it can be prior to handoff to detailed implementation.SpyGlass is also used to select and qualify semiconductor IP – a major challenge for all SoC design teams.

“GenSys provides a way to easily assemble and modify designs at the RTL level of abstraction. As a lot of each SoC is re-used design data, the need to modify this data to fit the new design is very prevalent. GenSys provides an easy, correct-by-construction way to get this job done.”

How does the SpyGlass solve RTL design issues, ensuring high quality RTL with fewer design bugs? He added that it’s the predictive analysis technology. SpyGlass provides accurate and relevant information about what will happen when a design is implemented and tested. By fixing these problems early, at RTL, a much higher quality design is handed off to detailed implementation with fewer bugs and associated schedule challenges.

On another note, I asked him why Apple’s choice of chips a factor in influencing the global chip industry? The primary reason is their volume and buying power. Apple is something of a “King Maker” when it comes to who manufactures their chips. Apple is also a thought leader and trend setter, so their decisions affect the decisions of others.

Finally, the global semiconductor industry! How is the global semicon industry doing in H1-2013? As per Dr. Bose: “We see strong growth.  Our customers are undertaking many new designs at advanced process technology nodes. We think that this speaks well for future growth of the industry.  At a macro level, the consumer sector will drive a lot of the growth ahead.  For EDA, the higher levels of abstraction is where the growth will be.”

Moore’s Law could come to an end within next decade: POET

August 28, 2013 1 comment

Dr. Geoff Taylor

Dr. Geoff Taylor

POET Technologies Inc., based in Storrs Mansfield, Connecticut, USA, and formerly, OPEL Technologies Inc., is the developer of an integrated circuit platform that will power the next wave of innovation in integrated circuits, by combining electronics and optics onto a single chip for massive improvements in size, power, speed and cost.

POET’s current IP portfolio includes more than 34 patents and seven pending. POET’s core principles have been in development by director and chief scientist, Dr. Geoff Taylor, and his team at the University of Connecticut for the past 18 years, and are now nearing readiness for commercialization opportunities. It recently managed to successfully integrate optics and electronics onto one monolithic chip.

Elaborating, Dr. Geoff Taylor, said: “POET stands for Planar Opto Electronic Technology. The POET platform is a patented semiconductor fabrication process, which provides integrated circuit devices containing both electronic and optical elements on a single chip. This has significant advantages over today’s solutions in terms of density, reliability and power, at a lower cost.

“POET removes the need for retooling, while providing lower costs, power savings and increased reliability. For example, an optoelectronic device using POET technology can achieve estimated cost savings back to the manufacturer of 80 percent compared to the hybrid silicon devices that are widely used today.

“The POET platform is a flexible one that can be applied to virtually any market, including memory, digital/mobile, sensor/laser and electro-optical, among many others. The platform uses two compounds – gallium and arsenide – that will allow semiconductor manufacturers to make microchips that are faster and more energy efficient than current silicon devices, and less expensive to produce.

“The core POET research and development team has spent more than 20 years on components of the platform, including 32 patents (and six patents pending).”

Moore’s Law to end next decade?
Is silicon dead and how much more there is to Moore’s Law?

According to Dr. Taylor, POET Technologies’ view is that Moore’s Law could come to an end within the next decade, particularly as semiconductor companies have recently highlighted difficulties in transitioning to the next generation of chipsets, or can only see two to three generations ahead.

Transistor density and its impact on product cost has been the traditional guideline for advancing computer technology because density has been accomplished by device shrinkage translating to performance improvement. Moore’s Law begins to fail when performance improvement translates less and less to device shrinkage – and this is occurring now at an increasing rate.

He added: “For POET Technologies, however, the question to answer is not when Moore’s Law will end – but what next. Rather than focus on how many more years we can expect Moore’s Law to last – or pinpoint a specific stumbling block to achieving the next generation of chipsets, POET looks at the opportunities for new developments and solutions to continue advancements in computing.

“So, for POET Technologies, we’re focusing less on existing integrated circuit materials and processes and more towards a different track with significant future runway. Our platform is a patented semiconductor fabrication process, which concentrates on delivering increases in performance at lower cost – and meets ongoing consumer appetites for faster, smaller and more power efficient computing.”
Read more…

%d bloggers like this: