Home > chip market, chip suppliers, MCUs, microcontrollers, NXP > NXP’s LPC1500 MCU series drives multiple motors simultaneously

NXP’s LPC1500 MCU series drives multiple motors simultaneously

March 5, 2014

LPC1500

LPC1500

NXP Semiconductors N.V. recently released the LPC1500 microcontroller series, optimized for fast, easy, and high-precision motor control.

So, what’s unique about the new LPC family? First, the LPC1500 was designed to simplify motor control for the masses. It has the flexibility to drive various types of motors, such as ACIM, PMSM, BLDC, etc. The LPC1500 can also drive multiple motors simultaneously.

These aren’t all! The hardware interconnection between the SCTimer/PWM, ADCs and comparators allow the motor to be driven with little CPU intervention. It has free LPCXpresso IDE and free FOC firmware for sensored and sensorless motors that reduces cost and improves time to market.

Looking at the unique features and benefits, the Switch Matrix allows any function to be routed out to any pin making schematic capture and board layout simpler and faster. The SCTimer/PWM block is unique to NXP.

Benefits are, it can run independently of the CPU and generate extremely precise PWM waveforms for quiet, smooth, efficient motor drive. The 2x 2Msps 12b,12ch ADCs can measure simultaneous phase currents to determine precise motor position and speed. There are four comparators for fast system shutdown upon fault detection.

The LPC1500 is suitable for large appliances, HVAC, building automation, factory automation, industrial pumps and generators, digital power, remote sensing, etc.

How will the LPC1500 aid embedded engineers? According to NXP, it saves time to market using the free FOC firmware and GUI tuning tool. It also saves system cost by using only one system MCU, e.g., HVAC typically has one MCU for fan control and one MCU for the compressor. LPC1500 can control both.

The LPC1500 feature set makes it ideal for sensorless motor control removing the need for sensored motors and allowing customers to switch to cheaper sensorless motors. As the SCTimer/PWM can run independently of the CPU, the freed up CPU bandwidth can be used to control other parts of the system for example the LPC1500 can be used for both the control and motor board in a washing machine.

NXP is currently working with customers to understand their future requirements and developing the roadmap to match their needs.

%d bloggers like this: