Archive

Archive for the ‘fab policy’ Category

Round-up 2013: Best of semiconductors, electronics and solar

December 31, 2013 Comments off

Virtex UltraScale device.

Virtex UltraScale device.

Friends, here’s a review of 2013! There have been the usual hits and misses, globally, while in India, the electronics and semiconductor industries really need to do a lot more! Enjoy, and here’s wishing everyone a Very Happy and Prosperous 2014! Be safe and stay safe!!

DEC. 2013
What does it take to create Silicon Valley!

How’s global semicon industry performing in sub-20nm era?

Xilinx announces 20nm All Programmable UltraSCALE portfolio

Dr. Wally Rhines: Watch out for 14/16nm technologies in 2014!

Outlook 2014: Xilinx bets big on 28nm

NOV. 2013
Indian electronics scenario still dull: Leaptech

Connecting intelligence today for connected world: ARM

India poses huge opportunity for DLP: TI

SEMICON Europa 2013: Where does Europe stand in 450mm path?

OCT. 2013
Apple’s done it again, wth iPad Air!

IEF 2013: New markets and opportunities in sub-20nm era!

SEPT. 2013
ST intros STM32F4 series high-performance Cortex-M4 MCUs

Great, India’s having fabs! But, is the tech choice right?

G450C

G450C

Now, India to have two semicon fabs!

Higher levels of abstraction growth area for EDA

AUG. 2013
Moore’s Law could come to an end within next decade: POET

What’s happening with 450mm: G450C update and status

300mm is the new 200mm!

JULY 2013
Xilinx tapes-out first UltraScale ASIC-class programmable architecture

JUNE 2013
EC’s goal: Reach 20 percent share in chip manufacturing by 2020!
Read more…

Can being fabless and M-SIPS take India to top?

August 6, 2012 Comments off

The other day, I was engaged in an interesting discussion regarding the Indian semiconductor industry. The obvious question: can fabless semiconductor take India to the top?

Well, it all depends on the definition of ‘top’! Does it mean the role of India-based semiconductor companies as a percentage of the semiconductor market globally? Or, do we take India as a system/gadget maker and thus, as a percentage of that market??

Fabrication is increasingly expensive, much involved and the actual global fabrication players (i.e. those who (also) own a fabrication plant) are declining and will be about three to four companies, and about 10, if we include all off those Chinese fabs.

And, India continues to slip back in having a ((proper) fab!

Now, India’s contributions to global electronics and semiconductors will continue to increase as the MNC subsidiary companies’ hub, and not quite as India-based companies, who are coming out with something that will shake the world in terms of that chip(s)!

If India has domestically consuming gadgets, that are more India specific, that could need devices available less outside. For that purpose alone, a local fab could be essential. However, such requirements appear less each day!

So, yes! Fabless semiconductor could be the way forward for India, in terms of contribution to its economy. However, in terms of India becoming a global player through such chips conceptualized in India, for India and the world, the chance is lesser, for now!

Well, hasn’t the Indian semiconductor industry been shouting ‘fabless’ from the rooftops for some years now? Let us see how India has progressed so far!

One, in terms of having local fab, the answer is NO! Two, in terms of increasing its percentage of contribution to global semiconductors, electronics from India, YES, an increasing role and value (though these are embedded software too).

In terms of having India-based companies working toward developing chips, YES again, in terms of smaller, analog, components that are crucial (like Cosmic Circuits), and YES, in terms of having IP-based companies (like Innovative Logic India for USB3.0) and, YES in terms of increasing service companies.

Many more companies are coming up, and some started directly here in India, such as Apsconnect, Techvulcan, etc. In terms of the actual solutions, YES again, as we have developed solutions in medical, automation, etc.

However, the answer to the question remains NO in terms of having chips come out of India, as yet!

Now, what happens to the fab-lite strategy? Well, it continues, globally. From an India perspective, it is actually in a way, validation of the earlier belief. There is less direct importance to manufacturing from themselves, but more about the actual value add they do OR can do.

Now, given this situation, let us also look at the key growth drivers in Indian electronics, especially, since we are talking about fabless and fab-lite.

The obvious one is to develop solutions for the India market. It is likely that these can be for outside markets as well. This ability will actually make India develop solutions for global markets. Also, these are not semiconductors per se, but, (embedded) solutions based on them.

The above situation can slowly lead to a fabrication and manufacturing ecosystem in India. India should also try to position itself at the higher end of the solutions, markets, services, etc., so that its value contribution can be much more.

Friends, is there a way out of the current situation that India finds itself?

Actually, this is normal process of growth in the chosen path. India continues to think about low end, less (or no) risk options of services. There is only so much growth, revenue, profit possible in those areas unless one goes up the market.

India has not done that as it could be, as an ecosystem in all. India should focus on its own internal requirements. That could mean growth and an increasing role for India, globally, as well!

Besides manufacturing, the big issue lies in marketing of such products. A senior statesman from a leading Indian electronics firm once asked me, “How will India compete in marketing of these products compared to the Chinese or Taiwanese manufacturers, who have more than 30 years of experience in these industries?”

How one wishes that India had at least two wafer fabs by now, what with the technology nodes constantly upping their ante. Even if someone does decide to put up a fab, it will be extremely expensive and has to be cutting-edge. However, as I said, one should never give up hope!

And then, there is the Modified Special Incentive Package Scheme (M-SIPS).

The newly announced M-SIPS is long awaited and much needed. The key is to now turn this ‘gazette notification’ into implementation, by the regulators, and utilisation by the industry.

It is understandable that the government can only do so much, particularly, under the given circumstances. With that kept in mind, this is a yet another good start! Hopefully, instead of just commenting on this policy, the industry sincerely works to benefit from it by properly utilizing it.

Why just think of digitalization of TV! The number of set-top boxes required across the country will be huge! Or, think of electrification of roads all over India. The number of LEDs required are likely to be massive. These are just two examples of the many possible. The Indian electronics industry needs to move fast, and now!

Hasn’t all of this been very easy  to say, difficult to manage! 😉

Semiconductor supply chain dynamics: Future Horizons @ IEF2011


The last decade heralded a dramatic transformation in supply chain dynamics, driven by the complexity challenge of staying on the More Moore curve. On the demand side, the high cost of fabs persuaded almost all integrated device manufacturers (IDMs) to use foundries for their leading-edge wafer supply.

The ever-increasing process complexity and its negative impact on manufacturing yields forced the adoption of sophisticated foundry-specific design-for manufacturing (DFM) techniques, effectively committing new chip designs to a single foundry and process.

At the same time, the industry adopted a much more cautious lagging rather than leading demand approach to new capacity expansion, resulting in under-supply and shortages in leading-edge wafer fab capacity. To make matters worse, the traditional oxide-based planar transistor started to misbehave at the 130nm node, as manifested by low yields and higher than anticipated power dissipation, especially when the transistors were supposed to be off, with no increase in performance, heralding the introduction of new process techniques (e.g., high-k metal gates).

Even before these structural changes have been fully digested, supply chain dynamics have been further disrupted by the prospective transition to 450mm wafer processing, to extreme ultra violet (EUV) lithography, and from planar to vertical transistor design.

Transistor design
Since the start of the industry, adding more IC functionality while simultaneously decreasing power consumption and increasing switching speed—a technique fundamentally known as Moore’s Law—has been achieved by simply making the transistor structure smaller. This worked virtually faultlessly down to the 130nm node when quite unexpectedly things did not work as planned. Power went up, speed did not improve and process yields collapsed. Simple scaling no longer worked, and new IC design techniques were needed.

While every attempt was made to prolong the life of the classic planar transistor structure, out went the polysilicon/silicon dioxide gate; although this transition was far from plain sailing, in came high-k metal gates spanning 65nm-28nm nodes. Just as the high-k metal gate structure gained industry-wide consensus at 28nm, it too ran out of steam at the 22nm-16nm nodes, forcing the introduction of more complex vertical versus planar transistor design and making the IC design even more process-dependent (i.e., foundry-dependent). Dual foundry sourcing, already impractical for the majority of semiconductor firms, will only get worse as line widths continue to shrink. Read more…

Study on semiconductor design, embedded software and services industry in India

April 6, 2011 Comments off

The India Semiconductor Association (ISA) has released a study on semiconductor design, embedded software and services industry, along with Ernst & Young.

According to the report, the key challenges constraining the growth of the semiconductor design industry are summarized under five major issues:
i) Quality, availability and maturity of talent.
ii) Absence of a startup and SME ecosystem.
iii) Lack of a semiconductor ecosystem.
iv) Lack of adequate infrastructure, policies and implementable incentives.
v) External issues such as competition from Asian countries and protectionist policies by some countries.

The report then goes on to tackle each one of these issues in detail under elaborate recommendations.

These recommendations require the concerted and co-ordinated efforts by the government, industry and academia to aid India reach the next level of growth and achieve the specific goals envisaged for the industry. The goals are:

Goal 1:
Maintain leadership in semiconductor design by incubating 50 fabless semiconductor companies, each with the potential to grow to $200 million in annual revenues by 2020.

Goal 2: Build on India’s favorable intellectual property protection image and make it among the top 5 destinations for intellectual property creation in the semiconductor design industry.

Goal 3: Capitalize on indigenous demand in strategic sectors to provide impetus to the Indian fabless semiconductor industry.

Goal 4: Sustain and nurture high-class semiconductor design manpower at a growth rate of 20 percent year-on-year to double its current output levels to reach a workforce size of 400,000 in the next five years.

The very first goal itself is a bit far fetched, but not that it can’t be achieved. To reach anywhere close to this goal, a concerted all round effort would be required from all in the industry. The fourth goal would have been better as the first goal, but never mind.

The second goal looks fine, but it is the third goal that seems a bit far off. This is April 2011, and still, there are talks about capitalizing on the indigenous demand in strategic sectors in order to provide impetus to the Indian fabless semiconductor industry?

I recall a discussion in mid-2005 where an industry expert mentioned that fabless was the way forward for the Indian industry! Between then and now, fabs were supposed to come up, but they failed. Nevertheless, one must not give up hope! Read more…

Indian fab policy gets 12 proposals; solar dominates

August 2, 2008 Comments off

Just about 10 odd days ago, I had blogged about building-integrated photovoltaics (BIPV)! I had also mentioned how solar/PV will be the next big story in India, with BIPV right up there at the very top!

Well, according to a published report on India Infoline, the Indian semiconductor and fab policy has attracted 12 major proposals, worth a whopping Rs. 93,000 crores!

A Press Information Bureau (PIB) release says that the Department of Information Technology (DIT), Government of India, has set up a panel of technical experts to evaluate the proposals.

The promoters will come up to the Appraisal Committee for sanction of subsidy under the scheme once they have reached the threshold limit of investment, as indicated in the guidelines of the Special Incentive Package Scheme.

A majority of these proposals — ten (10) — are for solar/PV. One proposal is for a semiconductor wafer — from Reliance Industries worth Rs. 18,521 crores, and another for TFT LCD flat panels — from Videocon Industries, worth Rs. 8,000 crores.

The 10 proposals for solar/PV are from: KSK Surya (Rs. 3,211 crores), Lanco Solar (Rs. 12,938 crores), PV Technologies India (Rs. 6,000 crores), Phoenix Solar India (Rs. 1,200 crores), Reliance Industries (Rs. 11,631 crores), Signet Solar Inc. (Rs. 9,672 crores), Solar Semiconductor (Rs. 11,821 crores), TF Solar Power (Rs. 2,348 crores), Tata BP Solar India (Rs. 1,692.80 crores), and Titan Energy System (Rs. 5,880.58 crores).

Does the Indian solar/PV story now start making some sense? It is very much in line to become the next big success story for India after the Indian telecom story!

Evidently, Reliance Industries is the major player in all of this, having proposed both a semicon wafer fab as well as a solar/PV fab. Lanco Solar, Solar Semiconductor, Signet Solar, Videocon, and PV Technologies are some of the other big players proposing to enter the Indian semiconductor/fab space.

Well, this is really great news for the Indian semiconductor industry! Further, it comes close on the heels of the announcement of the 3G spectrum policy and MNP policy by the government of India.

A few weeks ago, Dr. Madhusudan V. Atre, president, Applied Materials India, had mentioned that taking the solar/PV route was perhaps, a practical route for India to enter manufacturing. How true are those words!

Late June, I too had proposed, among others points, that Karnataka (and other Indian states) look at having some solar/PV fabs.

Dr. Pradip K. Dutta, Corporate Vice President & Managing Director, Synopsys (India) Pvt Ltd had also mentioned late June that it was too early to write off the Indian fab story. We now have the answer to that question of having fabs in India!

All of this should also excite those investors looking to enter India. The huge interest and subsequent proposals for solar/PV can also lead to India having some of its own solar farms as well!

The India Semiconductor Association should be congratulated for having made this happen. It is soon going to a year since the Indian government had announced the semiconductor policy. Now, with these mega proposals in place, maybe, we will see more investors in the Indian semicon and solar/PV fab spaces.

Top 10 Indian semicon companies review
Another interesting thought! Last year, around this time, I had prepared a list of the Top 10 Indian semiconductor companies. This particular blog has been among the most accessed.

Perhaps, a review is in order! Besides, several Indian players are beginning to make a mark, like Cosmic Circuits, SemIndia, etc. The list of August 2007 mostly had Indian design services companies. This feature of Indian design services companies dominating a top 10 list will probably continue for some more time, till all of these proposals bear fruit into concrete, productive fabs.

I am sure, with those mega investments coming into the Indian semicon wafer IC fab and solar/PV fabs, most of the companies would soon figure in any top 10 list!\

Surely, 2009 should be quite exciting as all of this means a very positive future and outlook for the Indian semiconductor industry.

%d bloggers like this: