Archive

Archive for the ‘PV’ Category

Convergence of PV materials, test and reliability: What really matters?


SEMI, USA recently hosted the seminar on ‘Convergence of PV Materials, Test and Reliability: What Really Matters?

Reliability in growing PV industry
Speaking on the importance of reliability to a growing PV industry, Sarah Kurtz, principal scientist, Reliability group manager, NREL, said that confidence in long-term performance is a necessity in the PV industry. Current failure rates are low. There is need to demonstrate confidence so that failure rates will stay low. There has been exponential growth of the PV industry so far. PV is a significant fraction of new installations. It now represents a significant fraction of new electricity generating installations of all kinds.

How does one predict the lifetime of PV modules? There has been a qualification test evolution for JPL block buys. Most studies of c-Si modules show module failures are small. Internal electrical current issues often dominate.

The vast majority of installations show very low PV module failure rates (often less than 0.1 percent). There has been evidence that PV is low risk compared to other investments. To sustain the current installation rate, we need to demonstrate confidence that justifies the annual investment of $100 million or so.

Critical factors in economic viability of PV
DuPont has broad capabilities under one roof. It offers materials, solar cell design, and processes integrated with panel engineering. Speaking about Critical factors in economic viability of PV – materials matter – Conrad Burke, global marketing director, DuPont PV Solutions, said that material suppliers have a distinct advantage to view trends. The industry can expect consolidation among large PV module producers and large materials suppliers.

There is an increasing dependence on materials suppliers for processes, tech support and roadmap. There is renewed attention to long-term reliability and quality of materials in PV products.

There is a race for survival among panel producers. There are dropping prices for solar panels, and quality is getting compromised. There are reduced incentives in established markets. The market will continue to grow. Key factors that determine investment return for PV include lifetime, efficiency and cost.

When materials fail, the consequences are dire. There are failures such as encapsulant discoloration, backsheet failure, glass delamination, etc. Average defect rates in new-build modules has been increasing. Significant number of PV installations do not deliver the projected RoI. The system lifetime is as important as cost and incentives.

Solar cell power continues to improve. There have been improvements from metal pastes and processes. Performance loss impacts the RoI. The US Department of Energy hired JPL to develop 30-year PV modules. Recent cost pressures have led to the dramatic changes in module materials and a lack of transparency.

Analyzing modules from the recent service environments show performance issues. Certification does not mitigate risk. Tests do not predict the actual field performance. He showed tier-1 solar panel manufacturing problems from China, Japan and the USA. Backsheet is critical to protect solar panels. Few materials have lengthy field experience. We will continue to see drop in prices for solar panels and opening of new markets. Focus for PV module makers will remain efficiency, etc.
Read more…

10 key trends for global PV industry

February 11, 2013 3 comments

Finlay Colville, vice president, NPD Solarbuzz, USA, recently presented the 10 key trends for the PV industry. According to him, the 10 key trends are:

1. PV demand growth. The industry has been characterized by strong growth rates of 25 percent to >100 percent Y/Y for the past decade. Now, the industry needs to plan for growth at more modest levels.

2. Globalization of PV demand. The emerging regions emerged for PV demand in 2012.

3. China end-market demand in 2013. China is forecast to account for approximately 25 percent global demand in 2013. The emerging demand is confined to a select group of countries across the three emerging regions.

4. Capacity imbalance reset. The nameplate capacity levels at the 60-GW level are often cited. However, the the PV industry currently has an ‘effective’ capacity of 41-42 GW. Therefore, demand needs to exceed 40 GW for proper reset.

Top module suppliers.

Top module suppliers.

5. Competitive shakeout. The top-10 module suppliers by MW for 2012 only comprised 50 percent of the year shipments. Also, a similar pattern is seen for c-Si cell production. We can expect another two years of shakeout on the supply side.

6. Cost and price rationalization. Every segment of the supply side is subject to price/cost pressure: from poly to BoS supply. Even reducing the silicon/nonsilicon costs of modules to 53c/W level by the end of 2013 may still result in negative gross margins.

7. Supply and demand rationalization. The poly suppliers have been operating at reduced utilization since 2H’12.

8. Evolution of PV technology roadmaps. Strong marketshare gains from standard c-Si multi ingot/wafers. The end-markets are driving module efficiencies and power ratings. The alternative growth methods have not gained traction and are being phased out.

9. Capital expenditure cyclic patterns. The PV process equipment suppliers have been impacted severely by overcapacity and overinvestments of 2010 and 2011. There is a strong chance that 2014 will end up as low as 2013. Also, technology-buy cycles don’t exist as yet in the PV industry.

10. Domestic protectionism counter measures. The effects of trade wars may yet have a profound effect on the PV industry into 2014. There will be direct effect of global overinvestment into domestic manufacturing. The other countries have an impact, but China and Europe decisions are key.

In summary, the PV industry is a 30-GW end-market today, and is forecast to grow to the 40-GW level in 2015. Europe demand is declining, but greater number of countries/territories expected to provide new PV demand. Demand in China during 2013 is essential for local suppliers.

The PV industry is capable of producing 12-15 GW per quarter. Supply and demand need a 40-GW+ market to balance. The shakeout phase is proceeding slowly, and will continue for the next two years. Reducing costs are not yet keeping up with price declines. ASP and ISP stabilization period is needed badly.

The end-market demand has become dependent on low ISPs. Also, multi c-Si based modules are dominating the industry. PV equipment suppliers are unlikely to see meaningful new order intake until 2014 or beyond. Finally, trade wars and domestic protectionism measures are crucially dependent on the EU and China decisions in 2013.

ReneSola intros Virtus II PV modules in India

November 7, 2012 2 comments

Virtus II modules from ReneSola.

Virtus II modules from ReneSola.

ReneSola Ltd, a leading global manufacturer of solar PV modules and wafers, has introduced its new Virtus II multicrystalline modules in India. ReneSola has started providing locally produced PV modules to the Indian market and expects to provide 250 MW of India-made PV modules over a two-year period.

The India launch follows the successful introduction of the Virtus II solar modules to the US and Australian markets.

Founded in 2005, Renesola has 17 subsidiaries worldwide. Production sites located in Zhejiang, Jiangsu and Sichuan, China. The supplier estimates to ship 1,550 ingots and 700 wafers during 2012, up from 1,014.1 ingots and 295,2 million wafers in 2011.

Some of Renesola’s projects include 4MW and 2MW in Slovakia, 11.5MW in Germany, 20MW in China, 9.21MW in Italy, and 27.6MW again in Germany. A couple of Renesola’s rooftop projects include 118.8KW in Slovakia, 1.95MW and 100.8KW in Greece, 1.4MW in Belgium, 12.96KW in Bulgaria, and 806.4KW in Germany.

Virtus II modules
Characteristics of the Virtus II modules include higher power output, higher performance at same cost, same LID, and same CTM cost. Virtus ingot improves the distribution of grain size and lifetime, and provides higher lifetime and lower dislocation density. The Virtus A++ wafer allows uniform grain distribution with less defects. The Virtus A++ wafer also has much lower defects.

Major defects of conventional multi‐crystalline wafers can be reduced by the innovative controlled DSS method. The Virtus I module provides better temperature coefficient of power and lower light induced degradation compared to mono modules. The Virtus II wafer increases cell efficiency due to higher lifetime, lower dislocation and uniform grain size. The Virtus II module shows better performance and the same production cost of multi-module.

Solarcon India 2012: Solar industry in third wave!

September 3, 2012 1 comment

SEMI, USA.

SEMI, USA.

There are three phases of PV industry development, including formation, regional development and globalization, according to Bettina Weiss, VP, Global PV Business Unit, SEMI, USA. She was delivering the opening keynote at the ongoing Solarcon India 2012 event in Bangalore, India. The event runs till September 5.

According to her, in the first stage, discoveries lead to inventions. Inventions find niche and high-value applications. Technology, and not manufacturing is the key driver here. For regional development, new industries seen as source for economic development. Markets develop through government subsidies. Global supply chains and regional clusters of excellence develop as well.

State of global  PV industry
The government policy support for PV has been strong till 2011. However, it may fall of during 2012-16. The supply-demand balance was generally stable till 2011, which could likely see structural overcapacity in 2012-16. The demand, which has been over 70 per cent till 2011, will likely see -20 per cent growth from 2012-16.

While there were many ‘saviour’ markets, such as Spain (2008), Italy (2010) and Germany (2009-11), Europe may prove to be not enough to absorb excess capacity in 2012-16. Poly, scale and the learning curve had been competitive till 2011, and are likely to give way to non-poly costs, technology and efficiency during 2015-16. While the gross margin was consistently above 20 per cent till now, the path to profitability remains unclear for the period 2012-16.

As for the cell and module makers performance, sharp price declines since 2011 have stimulated record installations globally. The effect on PV manufacturers have been severe. The entire supply chain has been plagued with collapsing margins.

Revenue to shipment ratio declined for five consecutive quarter since Q1 ’11. The list of insolvencies keeps growing. The outlook for 2012 is that volume/shipment upside is likely, but the path to profitability is still unclear.

Then, there is the ongoing solar trade war!

The US Department of Commerce (DOC) levied anti-dumping tariffs against Chinese solar module imports, with tariffs ranging from 31 per cent to 250 per cent. In response to the US tariffs, China’s Ministry of Commerce, on July 21, 2012, announced that it will start its own AD and CVD investigation on imported solar-grade polysilicon from US, and is initiating an AD investigation on these imports from South Korea. The EU Commission will decide by mid-September whether to accept a similar complaint and launch an investigation.
Read more…

Future material and devices for power electronics

December 15, 2011 1 comment

Alexandre Avron, market analyst in power electronics, Yole Développement, provided a briefing on semiconductor material’s potential through an analysis of devices and systems for power electronics.

According to him,  there is still a bright future for silicon. It will keep good market share until at least 2016 and even further, being cost competitive and very standard. On the other side, SiC is more applied to higher voltages. These are the smallest markets, but probably the one requiring SiC properties the most. PV inverters and EV/HEV are at intermediary voltage levels, they could both be targeted by SiC and GaN, this makes the predictions very difficult.

No technical aspects helps in knowing which material will be more used. They have their advantages and drawbacks, and both deserve their place. Prediction must be based on developments advancements.

The points to watch about SiC and GaN devices include: samples availability is a main point for future integration, reliability is also a main concern, especially for SiC devices, voltage capability seems to keep GaN at smaller power, and cost: GaN appears to be potentially cheaper, as it is based on Si wafers and can be CMOS compatible. Read more…

Will solar downturn lead to more mature PV industry?

April 17, 2009 Comments off

The severe downturn in the global Photovoltaic (PV) market in 2009 actually could have a positive outcome for the worldwide solar industry, yielding a more mature and orderly supply chain when growth returns, according to iSuppli Corp.

Worldwide installations of PV systems will decline to 3.5 Gigawatts (GW) in 2009, down 32 percent from 5.2GW in 2008. With the average price per solar watt declining by 12 percent in 2009, global revenue generated by PV system installations will plunge by 40.2 percent to $18.2 billion, down from $30.5 billion in 2008.

The figures present iSuppli’s forecasts of global PV installations in terms of gigawatts and revenue.

Fig 1: Global Photovoltaic System Installation Forecast in Megawatts, 2008-2013Source: iSuppli, April 2009

“For years, the PV industry enjoyed vigorous double-digit annual growth in the 40 percent range, spurring a wild-west mentality among market participants,” said Dr. Henning Wicht, senior director and principal analyst for iSuppli. “An ever-rising flood of market participants attempted to capitalize on this growth, all hoping to claim a 10 percent share of market revenue by throwing more production capacity into the market. This overproduction situation, along with a decline in demand, will lead to the sharp, unprecedented fall in PV industry revenue in 2009.”

However, the 2009 PV downturn, like the PC shakeout of the mid 1980s, is likely to change the current market paradigm, cutting down on industry excesses and leading to a more mature market in 2010 and beyond.

Fig 2: Global Revenues Generated by Photovoltaic Installations 2008-2013 in Millions of US DollarsSource: iSuppli, April 2009

“The number of new suppliers entering and competing in the PV supply chain will decelerate and the rate of new capacity additions will slow, bringing a better balance between supply and demand in the future,” Wicht said.

Blame it on Spain
The single event most responsible for the 2009 PV market slowdown was a sharp decline in expected PV installations in Spain. Spain accounted for 50 percent of worldwide installations in 2008. An artificial demand surge had been created in Spain as the time approached when the country’s feed-in-tariff rate was set to drop and a new cap of 500 Megawatts (MW) loomed for projects qualifying for the above-market tariff. This set a well-defined deadline for growth in the Spanish market in 2009 and 2010.

While the Spanish situation is spurring a surge in excess inventory and falling prices for solar cells and systems, this will not stimulate sufficient demand to compensate for the lost sales in 2009. Even new and upgraded incentives for solar installations from nations including the United States and Japan—and attractive investment conditions in France, Italy, the Czech Republic, Greece and other countries—cannot compensate for the Spanish whiplash in 2009.

The Spanish impact will continue into 2010, restraining global revenue growth to 29.2 percent for the year. Beyond Spain, the PV market is being adversely impacted by the credit crunch.

“Power production investors and commercial entities are at least partially dependent upon debt financing,” Wicht noted. “Starting in the first quarter of 2009, many large and medium solar-installation projects went on hold as they awaited a thaw in bank credit flows.”

After the fall
After 2010, the fundamental drivers of PV demand will reassert themselves, bringing a 57.8 percent increase in revenue in 2011 and similar growth rates in 2012 and 2013.

“PV remains attractive because it continues to demonstrate a favorable Return on Investment (RoI),” Wicht said. “Furthermore, government incentives in the form of above-market feed-in-tariffs and tax breaks will remain in place, making the RoI equations viable through 2012. Cost reductions will lead to attractive RoI and payback periods even without governmental help after 2012.”

Furthermore, lower system prices will open up new markets by lowering incentives and subvention costs. The lower the PV system prices are, the lower the incentives will have to be. Developing regions will be big the beneficiaries of these lower prices and thus will grow faster than the global average, Wicht said.

Source: iSuppli, USA

Opportunities in India’s solar/PV landscape: SEMI India


Solar/photovoltaics (PV) holds tremendous potential and promise for India, a fact not hidden from anyone. To further highlight its importance, SEMI India unveiled its first paper on Solar PV in India yesterday afternoon.

More action from Indian government needed
The meet called for more action from the government of India, a more closer industry-government collaboration, as well as the need for financial institutions to pay more attention to the solar/PV segment in India.

The photo here shows from left to right: Dr. Madhusudan V. Atre, President, Applied Materials India; Dr. J. Gururaja, Renewable Energy Action Forum & Executive President, SEMI India; K. Subramanya, CEO, Tata BP Solar; and Sathya Prasad, president, SEMI India.

Touching on the rationale for this SEMI paper on solar/PV’s landscape in India, Dr. J. Gururaja, Renewable Energy Action Forum and Executive President, SEMI India, said it was meant to project the solar/PV industry’s perspective: where we are and what needs to be done! This is a first account report and will be followed by many other such reports.

He said: “Solar in general, and PV in particular, can address the challenges that we face today. Solar/PV has a special attraction. It converts solar to electricity without involving any moving parts.”

He added that although the industry has been looking at the potential, the markets have not been expanding as expected. “We need to see what can be done and achieved. This report is a stock-taking exercise,” he pointed out.

Case for solar/PV in India
Sathya Prasad, president of SEMI India, touched upon the case for PV in India. These include:
* The existing power deficit situation in many parts of the country.
* India’s brisk economic growth implies rising energy needs.
* Overdependence on coal for electricity generation — limited coal reserves and CO2 emissions.
* Overdependence on oil and natural gas imports — it accounts for 7 percent of GDP and consequent energy security concerns.

According to him, India is abundantly endowed with solar radiation. So far, so good!

Key PV opportunities for India
According to SEMI’s paper, the key PV opportunities for India lie in off-grid applications and grid-connected PV. The off-grid applications include:
* Basic lighting and electrification of rural homes.
* Irrigation pump sets.
* Power back-up for cellular base station towers — approximately, there will be 2.9 lakh base station towers by the end of 2009.
* Urban applications — such as street lighting, etc.

The opportunities in grid-connected PV exist in:
* The current grid connected PV generation capacity is very small.
* Existing power deficit and huge projected future need.
* The cost point of PV has been declining continuously with technology improvements and scale.

Benefits of PV in India
The benefits of PV in India extend well beyond addressing energy needs. For instance, renewable energy technologies create more jobs than any fossil fuel based technologies. It also creates jobs across the value chain — from R&D to manufacturing, installation and maintenance. Sathya Prasad highlighted MNRE’s point that about 100,000 jobs could be created out of PV.

PV also has the capability of transforming lives. About 450 million Indians today manage with kerosene/other fuels for very basic lighting despite its significant health and safety risks. In this context, special mention needs to be made of the Aryavarta Grameen Bank’s home electrification program.

Challenges for PV in India
Evidently, a bunch of opportunities are awaiting India in the solar/PV space. However, several challenges need to be overcome as well. These would be:
* Need for closer industry-government co-operation.
* Need for standards.
* Need for collaborative, goals driven R&D.
* Training and human resources development
* Need for financing infrastructure and models.

So, what are the recommendations of this paper on solar/PV landscape in India, and further call to action? These are:
* Need to evolve a common government-industry vision to make India a world leader in PV.
* Develop financing infrastructure and models that will motivate large-scale PV adoption and investments.
* Expand development of PV in off-grid applications.
* Accelerate grid-connected PV generation on a large scale.

Call for low carbon growth strategy
“Low carbon growth path is universal now. To make that happen, there needs to be a political will,” advised K. Subramanya, CEO, Tata BP Solar, and chairman SEMI India PV Advisory Committee, while presenting his perspective on the solar/PV industry in India.

There has been little action on part of the government of India. “This needs to be implemented on the ground. We need policy and lifestyle innovation,” he added. Subramanya cautioned that, “Too much of analysis will result in paralysis.” According to him, separate budgets are required for a low carbon growth strategy. “Solar has tremendous potential. Even its learning curve is brilliant,” Subramanya noted.

He added that if the European Union (EU) can make a low carbon journey so smoothly, then why not India? For instance, in Karnataka state alone, the demand is said to be 6700MW and a 10-11 percent peak shortage. We have 20-odd lakh Bhagya Jyoti and Kutir Jyoti units, and around 7,870-odd street lights. If a majority of these can be replaced by solar, it could lead to tremendous savings! This could be at least 57MW for a state like Karnataka. Apparently, all of this would require an investment of Rs. 52 crores and a payback time of two years.

“Why can’t we develop a low-carbon growth path for every state in India? Imagine, what it can do for the other states,” Subramanya highlighted. “If the power sector does not do well, it will hit the country’s GDP!” Quite rightly so!!

Subramanya cited another example of solar water heaters in Karnataka. There are 32 lakh homes, of which about 5 lakh homes have solar water heaters. If more houses were to adopt these, it would result in a saving of 4,000MW of electricity! The Tata BP Solar CEO also called upon financial institutions to have a closer look at solar. Even the tariffs structure for solar/PV in India is not favorable enough.

He also touched upon US President Barack Obama’s energy plan and the actions taken, since his coming to power, and drew a parallel with India’s national action plan, which includes a solar mssion. This was released last June, but hardly any action has happened on the ground. So, there needs be changes on this front as well.

Four key aspects for solar/PV in India
Dr. Madhusudan V. Atre, president, Applied Materials India and vice chairman SEMI India PV Advisory Committee, highlighted four major aspects while presenting his perspective on the solar/PV industry. These are:
* See the advantage SEMI India brings to India. It can help bring costs down, due to the involvement of the PV Group.
* A point Dr. Atre had highlighted to me about a year back — that solar/PV is a great way to trigger manufacturing in India. He said that the solar/PV ecosystem will be a very important step in setting up a semiconductor manufacturing ecosystem in the country.
* What wireless did to telecom — perhaps, solar/PV has a similar aim! It can get rid of transmission lines and actually take power to the people!
* The Indian government-academia-industry would need to work hand-in-hand.

%d bloggers like this: