Archive

Archive for the ‘solar modules’ Category

Convergence of PV materials, test and reliability: What really matters?


SEMI, USA recently hosted the seminar on ‘Convergence of PV Materials, Test and Reliability: What Really Matters?

Reliability in growing PV industry
Speaking on the importance of reliability to a growing PV industry, Sarah Kurtz, principal scientist, Reliability group manager, NREL, said that confidence in long-term performance is a necessity in the PV industry. Current failure rates are low. There is need to demonstrate confidence so that failure rates will stay low. There has been exponential growth of the PV industry so far. PV is a significant fraction of new installations. It now represents a significant fraction of new electricity generating installations of all kinds.

How does one predict the lifetime of PV modules? There has been a qualification test evolution for JPL block buys. Most studies of c-Si modules show module failures are small. Internal electrical current issues often dominate.

The vast majority of installations show very low PV module failure rates (often less than 0.1 percent). There has been evidence that PV is low risk compared to other investments. To sustain the current installation rate, we need to demonstrate confidence that justifies the annual investment of $100 million or so.

Critical factors in economic viability of PV
DuPont has broad capabilities under one roof. It offers materials, solar cell design, and processes integrated with panel engineering. Speaking about Critical factors in economic viability of PV – materials matter – Conrad Burke, global marketing director, DuPont PV Solutions, said that material suppliers have a distinct advantage to view trends. The industry can expect consolidation among large PV module producers and large materials suppliers.

There is an increasing dependence on materials suppliers for processes, tech support and roadmap. There is renewed attention to long-term reliability and quality of materials in PV products.

There is a race for survival among panel producers. There are dropping prices for solar panels, and quality is getting compromised. There are reduced incentives in established markets. The market will continue to grow. Key factors that determine investment return for PV include lifetime, efficiency and cost.

When materials fail, the consequences are dire. There are failures such as encapsulant discoloration, backsheet failure, glass delamination, etc. Average defect rates in new-build modules has been increasing. Significant number of PV installations do not deliver the projected RoI. The system lifetime is as important as cost and incentives.

Solar cell power continues to improve. There have been improvements from metal pastes and processes. Performance loss impacts the RoI. The US Department of Energy hired JPL to develop 30-year PV modules. Recent cost pressures have led to the dramatic changes in module materials and a lack of transparency.

Analyzing modules from the recent service environments show performance issues. Certification does not mitigate risk. Tests do not predict the actual field performance. He showed tier-1 solar panel manufacturing problems from China, Japan and the USA. Backsheet is critical to protect solar panels. Few materials have lengthy field experience. We will continue to see drop in prices for solar panels and opening of new markets. Focus for PV module makers will remain efficiency, etc.
Read more…

Five-year outlook for solar PV industry!


According to Finlay Coville, VP and team leader, NPD Solarbuzz, full year end market PV demand during 2012 reached 29.05 GW. The demand is forecast to increase to 31 GW in 2013. China is expected to replace Germany as the leading market for the first time. The global market is likely to have a CAGR exceeding 15 percent, highlighting long term confidence in global PV adoption levels.

Supply vs. demand overview in 2012
The upstream c-Si module/thin-film panel suppliers produced 30.1 GW of new product in 2012. Combined with inventory levels through the value chain, this provided 31 GW of panels to the downstream channels. 29 GW was used for market demand, while 2 GW went to the downstream inventory.

Demand overview 2013
Year 2013 is shaping up as a 31 GW demand year under the most likely scenario. Over 50 percent of the end market demand is projected to come from China, Germany and North America (USA and Canada). 2013 will be a transition year for the emerging PV territories. Both the Middle East and Africa and Emerging Asia will likely reach 1 GW.

Source: NPD Solarbuzz, USA.

Source: NPD Solarbuzz, USA.

PV demand in 2012 accounted for approximately 30 percent of all PV installed globally. The industry growth in 2012 is positive, but set against a backdrop of an industry that had been accustomed to year-on-year growth often exceeding 100 percent. The industry is forecast to return to double digit growth.

PV scenario forecasting continies to show divergent outcomes in 2017. A high market demand scenario assumes a strong economic environment and aggressive PV policies by way of direct incentives and lower regulatory hurdles.

Five-year cumulative demand by geography
Cumulatively, global PV demand is forecast to exceed 230 GW over the five year period to 2017. China is forecast to install 51 GW accounting for over 20 percent. Europe will continue to offer strong regional PV market. North America and Japan will provide over 61 GW of demand. Emerging markets are projected to create over 25 GW of PV demand, more than 10 percent of the cumulative total to 2017.

By application segment, the ground-mount segment will remain the single largest segment over the five years. Residential and non-residential (commercial) segments will continue to be characterized by specific end-user requirements, different supply channels and routes-to-market for upstream suppliers.

The PV industry was configured to supply over 45 GW in 2012. The industry is likely to be in an over-capacity mode in 2013, with balanced supply/demand levels restored from 2015. Market share aspirations remain a key driver for PV manufacturers. During 2013 and 2014, the capacity taken offline is likely to be more than compensated for by newly ramped capacity.

With multi-domain c-Si module production, most panels had efficiencies in the 13-16 percent band during 2012. High efficiency concepts are not likely to strongly influence the module efficiency landscape during 2013 or 2014. If high efficiency cell types gain traction, the share of modules with efficiencies above 16 percent will increase.

In 2012, a wide range of efficiencies were produced, but with levels that do not compete with c-Si modules for space-constrained applications. The range of panels available in the 12-14 percent band is likely to grow strongly from 2015 as leading suppliers benefit from process improvements. Panels below 10 percent efficiency will become obsolete.

Despite end market growth expected, revenues available to each part of the value-chain will see strong declines Y/Y in 2013. This is due to the ASPs declining at a faster rate than the end-market demand growth, within a strong overcapacity environment. Revenues are also unlikely to recover for each value-chain segment until the 2016-2017 period.

What’s with prices?
2012 was the fourth year in a row that c-Si module prices declined and was the largest Y/Y decline. As capacity throughout the PV chain has increased, the oversupply has put further pressure on the ASPs. Declines in pricing occurred further upstream, at the poly, wafer and cell segments.

Tracking SAM revenues fron selling modules into downstream channels is becoming less important to the PV industry. as a number of module suppliers take on EPC and project developer roles.

PV equipment spending
As for PV equipment spending, the most likely forecast sees capacity being added by a select gtoup of tier 1 c-Si makers during 2014. The next cyclic downturn is forecast for 2016-2017. This assumes excess capacity is added in the next upturn.

If we look at the current scope of trade disputes, there are five major markets — EU, USA, India, Canada, China — investigating products being imported, with China featuring in most cases. Most disputes are being pursued by the internal bodies, but several have been referred to the WTO for review. A growing number of emerging PV regions already have domestic content incentives.

Summary
PV demand was 29 GW in 2012, and 2013 is forecast to tip 31 GW. 230 GW of new PV demand is forecast between 2013-2017, adding to the 100 GW at the end of 2012. Eighty percent of PV demand in 2013-2017 will come from the top 10 end markets.

10 key trends for global PV industry

February 11, 2013 1 comment

Finlay Colville, vice president, NPD Solarbuzz, USA, recently presented the 10 key trends for the PV industry. According to him, the 10 key trends are:

1. PV demand growth. The industry has been characterized by strong growth rates of 25 percent to >100 percent Y/Y for the past decade. Now, the industry needs to plan for growth at more modest levels.

2. Globalization of PV demand. The emerging regions emerged for PV demand in 2012.

3. China end-market demand in 2013. China is forecast to account for approximately 25 percent global demand in 2013. The emerging demand is confined to a select group of countries across the three emerging regions.

4. Capacity imbalance reset. The nameplate capacity levels at the 60-GW level are often cited. However, the the PV industry currently has an ‘effective’ capacity of 41-42 GW. Therefore, demand needs to exceed 40 GW for proper reset.

Top module suppliers.

Top module suppliers.

5. Competitive shakeout. The top-10 module suppliers by MW for 2012 only comprised 50 percent of the year shipments. Also, a similar pattern is seen for c-Si cell production. We can expect another two years of shakeout on the supply side.

6. Cost and price rationalization. Every segment of the supply side is subject to price/cost pressure: from poly to BoS supply. Even reducing the silicon/nonsilicon costs of modules to 53c/W level by the end of 2013 may still result in negative gross margins.

7. Supply and demand rationalization. The poly suppliers have been operating at reduced utilization since 2H’12.

8. Evolution of PV technology roadmaps. Strong marketshare gains from standard c-Si multi ingot/wafers. The end-markets are driving module efficiencies and power ratings. The alternative growth methods have not gained traction and are being phased out.

9. Capital expenditure cyclic patterns. The PV process equipment suppliers have been impacted severely by overcapacity and overinvestments of 2010 and 2011. There is a strong chance that 2014 will end up as low as 2013. Also, technology-buy cycles don’t exist as yet in the PV industry.

10. Domestic protectionism counter measures. The effects of trade wars may yet have a profound effect on the PV industry into 2014. There will be direct effect of global overinvestment into domestic manufacturing. The other countries have an impact, but China and Europe decisions are key.

In summary, the PV industry is a 30-GW end-market today, and is forecast to grow to the 40-GW level in 2015. Europe demand is declining, but greater number of countries/territories expected to provide new PV demand. Demand in China during 2013 is essential for local suppliers.

The PV industry is capable of producing 12-15 GW per quarter. Supply and demand need a 40-GW+ market to balance. The shakeout phase is proceeding slowly, and will continue for the next two years. Reducing costs are not yet keeping up with price declines. ASP and ISP stabilization period is needed badly.

The end-market demand has become dependent on low ISPs. Also, multi c-Si based modules are dominating the industry. PV equipment suppliers are unlikely to see meaningful new order intake until 2014 or beyond. Finally, trade wars and domestic protectionism measures are crucially dependent on the EU and China decisions in 2013.

Round-up 2012: Best of electronics, semiconductors and solar

December 31, 2012 2 comments

Friends, here is the round-up of 2012, where the best of electronics, semiconductors and solar PV are presented. Best wishes for a very happy and prosperous new year! :)

Also, a word on the horrendous Delhi rape that has shaken up India. I am ashamed to be a man and a part of India’s society. My family and I are extremely sorry that the brave girl is no more! May her soul rest in peace. May God deliver justice, and quickly!

DECEMBER 2012
Opportunities in turbulent PV equipment market

Global semiconductor industry outlook 2013: Jaswinder Ahuja, Cadence

Next wave of design challenges, and future growth of EDA: Dr. Wally Rhines

Global medical image sensors market to grow 64 percent by 2017

Status of power semiconductor devices industry

NOVEMBER 2012
Global solar PV industry to remain under pressure in 2013!

Dr. Wally Rhines on global semiconductor industry outlook 2013

Focus on monolithic 3D-ICs paradigm shift for semicon industry

Xilinx announces 20nm portfolio strategy

Elliptic intros world’s first commercial touchless gesturing technology!

Global semiconductor industry outlook 2013: Analog Devices

IMEC’s 450mm R&D initiative for nanoelectronics ecosystem

OCTOBER 2012
III-V high mobility semiconductors for advanced CMOS apps

Yet another electronics policy for India?

IEF 2012: Turning recession into opportunity!

Global semicon sales to drop 1.7 percent in 2012?

Virtual prototyping ready for masses

MEMS to be $21 billion market by 2017: Yole

TSMC on 450mm transition: Lithography key!

SEPTEMBER 2012
Cadence Allegro 16.6 accelerates timing closure

Dr. Wally Rhines on global EDA industry

Solarcon India 2012: Solar industry in third wave!

AUGUST 2012
Apple wins big vs. Samsung in patent war!

Can being fabless and M-SIPS take India to top?

JULY 2012
Is Europe ready for 450mm fabs?

APRIL 2012
Xilinx intros Vivado Design Suite

MARCH 2012
Cadence releases latest Encounter RTL-to-GDSII flow

WLCSP market and industrial trends

FEBRUARY 2012
Top 10 semiconductor growth drivers: Intersil

Ingredients for successful fabless Indian semiconductor industry: Dr. Wally Rhines

Tariffs will slow growth in domestic demand for PV systems: The Brattle Group

Wireless leads in global semicon spends!

JANUARY 2012
India to allow imports of low-priced Chinese solar cells? Or, is it beaten?

Opportunities in turbulent PV equipment market

December 19, 2012 1 comment

Ms. Fatima Toor, analyst, Lux Research, recently presented on opportunities in turbulent PV equipment market, in association with SEMI, USA.

Global PV market trends
Bankruptcies are galore. Eg. Solyndra, Abound Solar, Konarka, etc. Global trade wars are also on the rise. There are US tariffs on Chinese solar cells. There is also an EU investigation on Chinese solar panels. Then, there are Chinese investigations on US, EU and Korean polysilicon dumping. Government incentives have been lowered in the EU, but raised in Asia and Americas. Following Barack Obama’s re-election in the US, the environmentalists are again upbeat about green energy.

Crystalline Si remains dominant.

Crystalline Si remains dominant.

Global PV demand increase will be driven by Asia and Americas in the coming years. Emerging markets will grow over six times in size from 2011-2017. Crystalline Si will be the dominant installed PV technology, at least till 2017. Gap between demand and supply will close.

The Q3-12 geographical capacity distribution would be across PV value chain. China leads in polysilicon, cells and modules supply. Chinese equipment manufacturers market share has been on the rise, ramping up competition for Western equipment suppliers.

Lux Research sampled 493 PV manufacturers. Of these, 40 percent are based in the EU, 28 percent are based in China, 17 percent are in the US and 15 percent are in the Rest of the World.

Opportunities for equipment manufacturers in current market state
Cost, efficiency and price are fundamental drivers of PV industry. Innovations across the value chain will enable higher margins for PV industry. The desire for cell and module manufacturers to reduce costs and differentiate will drive opportunities for equipment manufacturers.

Crystalline Si technology: Innovations across crystalline Si value chain would enable opportunities for equipment suppliers. Fluidized bed reactor (FBR) process requires 10 lWh/kg and is a continuous process. Why is FBR only 6 percent of total polysilicon capacity today? The reasons are:
* No off-the-shelf FBR reactors are available.
* Process complexity requires that Si granules can be polluted by impurities.
* There is an opportunity for equipment manufacturers to develop off-the-shelf FBR equipment that will enable reduced production costs for polysilicon.
* GCL announced developing its FBR technology.
* Samsung Fine Chemicals and MEMC have partnered to set up FBR polysilicon production due to its lower production costs.

Monocrystalline silicon (c-Si) ingot growth using Czochralski (CZ) method is high cost and results in pseudo-square c-Si wafers. Plate seed for qc-Si ingot growth with mc-Si grains on the edges and c-Si in the middle. ReneSola has technology with wafer capacity of 2GW of which 1.6GW is qc-Si Virtus wafers and 0.4GW are c-Si wafers. ReneSola is likely to be one of the Chinese companies to survive the shakeout due to its strategy and technology.

Opportunities exist to optimize qc-Si ingot growth. Modified directional solidification (DS) furnace makers claim 90 percent c-Si and 10 percent mc-Si yields during qc-Si ingot growth. In reality, 60 percent c-Si and 40 percent mc-Si results in high wafer binning and sorting costs. This provides an opp for equipment manufacturers to improve the c-Si yield to higher than 90 percent. The Qc-Si capacity is likely to increase in the coming years as DS furnace manufacturers innovate.
Read more…

Global solar PV industry to remain under pressure in 2013!


Module prices in 2012-13. Source: IHS iSuppli, USA.

Module prices in 2012-13. Source: IHS iSuppli, USA.

The outlook for the global solar PV industry does not look encouraging, at least, if recent happenings are set as benchmark. How will the global solar PV industry perform in 2013? How will the modules segment perform? How will solar cells segment perform in 2013?

Dr. Henning Wicht, director and principal analyst Photovoltaics, IHS iSuppli, said: “The industry will remain under pressure. We expect prices to decline further on all nodes. Margins will remain thin. Cell production outside of China, in particular Taiwan, can benefit from US anti-dumping tariffs on Chinese modules.

“However, Taiwanese cell producers will face difficulties, since European customer base will shrink. Module production will remain challenging. Prices are expected to decline further due to overcapacities and fierce competition.” Here is a graph of the module price decline.

There are a few other questions. Did the global solar PV industry touch 22 GW in 2012? What is the prediction for 2013? Also, how is Japan doing? Are we seeing pro REE politics there?

Dr. Wicht said that IHS iSuppli expects 31 GW of new installations in 2012. For 2013 IHS iSuppli forecasts 35 GW. “Installations in Europe

Installations by application. Source: IHS iSuppli, USA.

Global installations by application. Source: IHS iSuppli, USA.

are declining, while installations in emerging markets and Asia are increasing. China, US and many of the new markets favor ground installations. Europe and Japan address more rooftops. Japan has been seeing a lot of activities in H2-2012. We expect this boom to continue into 2013.

“IHS expects that the Japanese government will adjust tariffs in 2013, since investment conditions are very generous. This is helpful to kick-start the market. However, the generous tariffs will become expensive for rate payers if maintained too long. Details on tariff adjustment are not yet defined.”

Finally, how will the industry focus on electricity storage and grid integration in 2013? And, what’s going to happen with Chinese suppliers in 2013?

Dr. Wicht replied: “Solar companies will see continuing and even increasing difficulties during 2013. Thin margins for all producers (including silicon) will maintain. Smaller players will stop production. Also 2nd and 3rd tier Chinese suppliers will partially stop production. Tier 1 Chinese players will face difficulties of financing if stock prices will not increase and companies will be excluded of Nasdaq (pending).

“Also, anti-dumping investigations in Europe can harm Chinese module business in 2013 since buyers will be careful to avoid any retroactive tariff from beginning of 2013. Strategy wise, 2013 will be a very difficult year. Electricity storage is an emerging topic, which is now addressed mainly by inverter suppliers. Grid integration of PV power is becoming a concern of EPCs and investors.”

ReneSola intros Virtus II PV modules in India

November 7, 2012 2 comments

Virtus II modules from ReneSola.

Virtus II modules from ReneSola.

ReneSola Ltd, a leading global manufacturer of solar PV modules and wafers, has introduced its new Virtus II multicrystalline modules in India. ReneSola has started providing locally produced PV modules to the Indian market and expects to provide 250 MW of India-made PV modules over a two-year period.

The India launch follows the successful introduction of the Virtus II solar modules to the US and Australian markets.

Founded in 2005, Renesola has 17 subsidiaries worldwide. Production sites located in Zhejiang, Jiangsu and Sichuan, China. The supplier estimates to ship 1,550 ingots and 700 wafers during 2012, up from 1,014.1 ingots and 295,2 million wafers in 2011.

Some of Renesola’s projects include 4MW and 2MW in Slovakia, 11.5MW in Germany, 20MW in China, 9.21MW in Italy, and 27.6MW again in Germany. A couple of Renesola’s rooftop projects include 118.8KW in Slovakia, 1.95MW and 100.8KW in Greece, 1.4MW in Belgium, 12.96KW in Bulgaria, and 806.4KW in Germany.

Virtus II modules
Characteristics of the Virtus II modules include higher power output, higher performance at same cost, same LID, and same CTM cost. Virtus ingot improves the distribution of grain size and lifetime, and provides higher lifetime and lower dislocation density. The Virtus A++ wafer allows uniform grain distribution with less defects. The Virtus A++ wafer also has much lower defects.

Major defects of conventional multi‐crystalline wafers can be reduced by the innovative controlled DSS method. The Virtus I module provides better temperature coefficient of power and lower light induced degradation compared to mono modules. The Virtus II wafer increases cell efficiency due to higher lifetime, lower dislocation and uniform grain size. The Virtus II module shows better performance and the same production cost of multi-module.

Tariffs will slow growth in domestic demand for PV systems: The Brattle Group

February 2, 2012 2 comments

Recently, The Brattle Group came out with its report titled “The Employment Impacts of Proposed Tariffs on Chinese Manufactured Photovoltaic Cells and Modules”. Here are excerpts from the report.

At the request of the Coalition for Affordable Solar Energy (CASE), The Brattle Group has studied the employment impacts of a proposed trade restriction on Chinese-manufactured crystalline photovoltaic cells and modules.

This topic is timely, because the US Department of Commerce (DOC) is currently reviewing a petition that would lead to substantial tariffs on Chinese-produced photovoltaic cells and modules. Petitioners have requested tariffs up to 250 percent on Chinese-manufactured products in response to alleged government subsidies and below cost pricing.

In brief, we estimate that tariffs will slow the growth in domestic demand for photovoltaic systems by homeowners, commercial establishments and utilities, resulting in substantial job losses. We estimate jobs at risk under two tariff levels – 50 percent or 100 percent.

We find that a 50 percent tariff will shut the vast majority of Chinese imports out of the US market, and a 100 percent tariff will effectively block them altogether. We also estimate employment impacts accounting for two scenarios, a low scenario which assumes low demand elasticity and high supply elasticity, and a high scenario which reflects a high demand elasticity and a low supply elasticity. Read more…

Global solar PV industry likely to be 22 GW in 2012!

December 9, 2011 4 comments

Here is an outlook on the global solar PV industry for 2012, done with the assistance of Dr. Henning Wicht, senior director and principal analyst, IHS iSuppli. First, the outlook for the global solar PV industry for 2012. According to Dr. Wicht, the bottom up analysis results for the global solar PV industry is at 22 GW. However there is upside potential, e.g., in Italy and China, of a total of 6 GW.

On the same vein, what is the outlook for solar cell production in 2012? He said that based on the 22 GW market, 19.6 GW of cSi cells will be produced in 2012. If the market is growing faster (upside potential), then 24 GW is possible.

Global crystalline module producers Q2-11. Source: iSuppli, USA

Fig. 1: Global crystalline module producers Q2-11. Source: IHS iSuppli, USA.

Let us now have a look at the current top 15 producers. The graphs here are for global crystalline module producers and global thin film module producers, as of Q2 2011. The data for 2012 will certainly look different. 

Fig. 1 is about the crystalline module producers, as of Q2-11, with Suntech the leader at 9.8 percent share. Yingli with 6.8 percent and LDK with 6.4 percent are the next two. The others are: Trina Solar 6.2 percent, Canadian Solar 5.2 percent, Sharp 4.6 percent, Jinko 3.7 percent, Hanwha Solar 3.6 percent, Jabil Circuit 3.5 percent, SolarWorld 3.3 percent, REC 3.2 percent, Sunpower and Kyocera with 2.8 percent each, Sanyo Electric 2.5 percent, Bosch Solar 2.4 percent and all of the others at 33.3 percent.

Fig. 2 is about the global thin film module producers, as of Q2 2011, with First Solar as

Fig. 2: Global thin film module producers, Q2-11. Source: IHS iSuppli, USA.

Fig. 2: Global thin film module producers, Q2-11. Source: IHS iSuppli, USA.

the leader at 45.5 percent share. Solar Frontier with 10.5 percent and Sharp with 5.6 percent are the next two. The others are pretty small at the moment, with some of the major ones being Q-Cells with 3 percent, Bosch Solar 1.7 percent, etc. Others constitute 15.5 percent.

Improve cost structure, diversify downstream!
Two years ago, iSuppli had advised: ” improve the cost structure, improve the sales side, and diversify downstream.” How true does these hold for 2012?

Dr. Wicht said: “This advice remains very valid. Since 2009, nearly all Western players have developed downstream activities. They are using the power plant business to outbalance week demand and to enter into emerging markets.

“The challenge is now at the Chinese players: How do you maintain the high utilization of factories when sales is not visibility and there is no downstream business? PV installations in China are used as a “fast exit”, generating module sales and maintaining utilization (e.g., Yingli).” Read more…

Solarcon India 2011 begins with record exhibitors

November 9, 2011 2 comments

Presenting the excerpts from the welcome address by Debasish Paul Choudhury, president, SEMI India, at the ongoing Solarcon India 2011, being held in Hyderabad.

This year’s show features a larger exhibition, a three-day dual track conference, and will feature three concurrent technical programs. The theme for this year’s exposition, representing the widening solar value chain in India, is “Showcasing the Solar Eco‐System: From Polysilicon to Power Plants.”

Solarcon India 2011 opens in Hyderabad, India.

Solarcon India 2011 opens in Hyderabad.

The exhibition with over 115 exhibitors from eight countries, compared to 81 exhibitors in SOLARCON India 2010, covers the entire solar value chain, will provide you an opportunity to see a wide range of new products and services offered by Indian and international companies, under one roof.

This year’s show, as many of you are aware, is certified by the US Department of Commerce (US DOC), and features an exclusive US Pavilion with 14 leading US companies participating in the exhibition. I am also delighted to welcome a 35-member Clean Tech Delegation led by the USA’s Under Secretary of Commerce for International Trade, Francisco J. Sanchez to the show.

I am delighted to have in our midst two other distinguished guests – Dr. Bharat Bhargava, director – Photovoltaics, Ministry of New & Renewable Energy, Government of India, who is widely credited to be the architect of the India’s National Solar Mission. In the same vein, I am happy to welcome Jim Brown, president, Utility Systems Business Group, First Solar Inc., the world’s largest thin film module manufacturer, with us this morning.

Featuring more than 70 speakers drawn from the industry, academia and government, the conference is themed “Charting India’s Roadmap to Solar Leadership — Translating Potential into Reality.” The conference attracts high-profile participation of solar energy leaders from all segments of the industry supply chain, academia and governments from India and around the world.

The three-day conference also includes an LED Lighting summit, co-organized with Frost & Sullivan, which will focus on SSL (solid state lighting) technology with speakers from among LED manufacturers, LED suppliers, researchers and others.

The climate in which we are holding the show this year has not been without its challenges – on two fronts: the events in Hyderabad on the one hand (which have now, we are grateful to all parties involved, returned to complete normalcy) and the considerable stress that the solar industry is under due the slowdown in the European economies, regulatory changes in the major solar markets and manufacturing over capacity resulting in a fall in PV system prices over the last two to three quarters.

This show and the support it has received are proof that the long term prospects for the solar industry remain most bright in India.

%d bloggers like this: