Archive

Archive for the ‘HCPV’ Category

Round-up 2013: Best of semiconductors, electronics and solar

December 31, 2013 Comments off

Virtex UltraScale device.

Virtex UltraScale device.

Friends, here’s a review of 2013! There have been the usual hits and misses, globally, while in India, the electronics and semiconductor industries really need to do a lot more! Enjoy, and here’s wishing everyone a Very Happy and Prosperous 2014! Be safe and stay safe!!

DEC. 2013
What does it take to create Silicon Valley!

How’s global semicon industry performing in sub-20nm era?

Xilinx announces 20nm All Programmable UltraSCALE portfolio

Dr. Wally Rhines: Watch out for 14/16nm technologies in 2014!

Outlook 2014: Xilinx bets big on 28nm

NOV. 2013
Indian electronics scenario still dull: Leaptech

Connecting intelligence today for connected world: ARM

India poses huge opportunity for DLP: TI

SEMICON Europa 2013: Where does Europe stand in 450mm path?

OCT. 2013
Apple’s done it again, wth iPad Air!

IEF 2013: New markets and opportunities in sub-20nm era!

SEPT. 2013
ST intros STM32F4 series high-performance Cortex-M4 MCUs

Great, India’s having fabs! But, is the tech choice right?

G450C

G450C

Now, India to have two semicon fabs!

Higher levels of abstraction growth area for EDA

AUG. 2013
Moore’s Law could come to an end within next decade: POET

What’s happening with 450mm: G450C update and status

300mm is the new 200mm!

JULY 2013
Xilinx tapes-out first UltraScale ASIC-class programmable architecture

JUNE 2013
EC’s goal: Reach 20 percent share in chip manufacturing by 2020!
Read more…

10 key trends for global PV industry

February 11, 2013 3 comments

Finlay Colville, vice president, NPD Solarbuzz, USA, recently presented the 10 key trends for the PV industry. According to him, the 10 key trends are:

1. PV demand growth. The industry has been characterized by strong growth rates of 25 percent to >100 percent Y/Y for the past decade. Now, the industry needs to plan for growth at more modest levels.

2. Globalization of PV demand. The emerging regions emerged for PV demand in 2012.

3. China end-market demand in 2013. China is forecast to account for approximately 25 percent global demand in 2013. The emerging demand is confined to a select group of countries across the three emerging regions.

4. Capacity imbalance reset. The nameplate capacity levels at the 60-GW level are often cited. However, the the PV industry currently has an ‘effective’ capacity of 41-42 GW. Therefore, demand needs to exceed 40 GW for proper reset.

Top module suppliers.

Top module suppliers.

5. Competitive shakeout. The top-10 module suppliers by MW for 2012 only comprised 50 percent of the year shipments. Also, a similar pattern is seen for c-Si cell production. We can expect another two years of shakeout on the supply side.

6. Cost and price rationalization. Every segment of the supply side is subject to price/cost pressure: from poly to BoS supply. Even reducing the silicon/nonsilicon costs of modules to 53c/W level by the end of 2013 may still result in negative gross margins.

7. Supply and demand rationalization. The poly suppliers have been operating at reduced utilization since 2H’12.

8. Evolution of PV technology roadmaps. Strong marketshare gains from standard c-Si multi ingot/wafers. The end-markets are driving module efficiencies and power ratings. The alternative growth methods have not gained traction and are being phased out.

9. Capital expenditure cyclic patterns. The PV process equipment suppliers have been impacted severely by overcapacity and overinvestments of 2010 and 2011. There is a strong chance that 2014 will end up as low as 2013. Also, technology-buy cycles don’t exist as yet in the PV industry.

10. Domestic protectionism counter measures. The effects of trade wars may yet have a profound effect on the PV industry into 2014. There will be direct effect of global overinvestment into domestic manufacturing. The other countries have an impact, but China and Europe decisions are key.

In summary, the PV industry is a 30-GW end-market today, and is forecast to grow to the 40-GW level in 2015. Europe demand is declining, but greater number of countries/territories expected to provide new PV demand. Demand in China during 2013 is essential for local suppliers.

The PV industry is capable of producing 12-15 GW per quarter. Supply and demand need a 40-GW+ market to balance. The shakeout phase is proceeding slowly, and will continue for the next two years. Reducing costs are not yet keeping up with price declines. ASP and ISP stabilization period is needed badly.

The end-market demand has become dependent on low ISPs. Also, multi c-Si based modules are dominating the industry. PV equipment suppliers are unlikely to see meaningful new order intake until 2014 or beyond. Finally, trade wars and domestic protectionism measures are crucially dependent on the EU and China decisions in 2013.

HCPV on way to utility market!

December 5, 2011 1 comment

Dr. Milan Rosina.

Dr. Milan Rosina.

According to Dr. Milan Rosina, Yole Developpement, high concentration PV (HCPV) does not follow the same way as PV. Adapted applications and installations in suitable regions are necessary. There are synergies between HCPV, LED, automotive and PV industries. New market entrants could help in the business development Dr. Rosina was speaking at an HCPV seminar organized by Yole.

More than 80 companies are currently working in developing HCPV technology. More than 30 firms are developing new modules and systems. Large-scale installations are underway. There is large potential for the LCOE cost decrease. Positive track record from the large-scale installation could significantly improve the bancability of HCPV systems. However, strong competition with flat-module PV will remain.

Earlier, touching upon solar electricity generation and HCPV at a glance, he said that cells based on III-V materials have currently the best efficiencies, both in laboratory and in industrial production. A world record efficiency of 43.5 percent under concentrated light was obtained in 2011 by Solar Junction of USA. Commercially available cells are produced by Spectrolab of USA, Emcore of USA and Azur Space of Germany that reach 39-40 percent efficiency.

III-V cells have been used since 1997 to power satellites in space. They are too expensive to be used in standard terrestrial applications. Therefore, these are combined in terrestrial applications with light concentration systems in order to increase the efficiency and to decrease the cost per watt. The interest of HCPV is to use only a small amount of III-V material and to concentrate the light onto very efficient cells.

Drivers and barriers
Marker drivers and advantages of HCPV include high power production (MWh/y per watt installed) in high DNI areas due to high system efficiency, sun tracking, amd low temperature coefficient. There is reduced consumption of (costly) semiconductor material due to the use of optical concentrating system. Other advantages include system modularity, ,inimal water use, low environmental impact, promising LCOE potential in the high DNI areas, and large potential for efficiency increase and cost reduction.

As for market barriers, HCPV is still a niche market. There are geographical limitations for installations (high DNI required). It is best adapted for ground-mounted power plants only. There is high system price to contend with, as well as low product maturity and lack of standards and independent track records. Finally, there is competition with all electricity sources, especially with CSP and PV.

HCPV systems are targeting the utility market, e.g. electricity production on a large scale. An HCPV system is a multicomponent and multidisciplinary system. System components include solar cell, receiver module, concentrating optics and HCPV module. High-precision assembly of all elements into the module is the key factor for reaching full module and system performance. The tracking system is equally important. Read more…

%d bloggers like this: