Archive

Archive for the ‘ST’ Category

STMicro intros M24SR dynamic NFC/RFID tag

February 21, 2014 Comments off

Amit Sethi

Amit Sethi

STMicroelectronics recently introduced the M24SR dynamic NFC/RFID tag.

Speaking about the USP of the M24SR, Amit Sethi, Product Marketing manager – Memories and RFID, STMicroelectronics India, said: “The unique selling proposition of the M24SR product is its two interfaces, giving users and applications the ability to program or read its memory using either an RF NFC interface or a wired I2C interface, in an affordable and easy-to-use device for a wide range of applications such as consumer/home appliance, OTP card, healthcare/wellness and industrial/smart meter.”

Let us see how the M24SR is beneficial for smartphone or any other audio device.

The M24SR is a dynamic NFC/RFID tag that manages the data exchange between the NFC phone and the microcontroller. The main use cases for data exchange are updating user settings, downloading data logs, and remote programming and servicing. The dynamic tag also enables seamless Bluetooth and Wi-Fi pairing, which is useful in, for example, audio devices.

How is the M24SR different from other products of the same segment?

Sethi said that the key difference is the dual interface: the M24SR memory can be accessed either by a low-power 2C interface or

M24SR

M24SR

by an ISO14443A RF interface operating at 13.56MHz. It also features RF status (MCU wake-up) and RF disable functions to minimize power consumption. In addition, the devices support the NFC data exchange format (NDEF from NFC forum) and 128-bit password protection mechanism.

The M24SR series is available in EEPROM memory densities from 2 Kbit to 64 Kbit and three package types: SO8, TSSOP8, and UFDFPN8.

What are the contributions of M24SR toward the Internet of Things?

Accotding to him, the M24SR dynamic NFC/RFID tag interactive and zero power capability, simplifies complex communications setups and enables data exchange among the home automation, wearable electronics, home appliances, smart meter, wellness, etc.

Especially with the NFC capability, the M24SR is ideal for applications waiting for something, like a ticket or ID to launch an activity.

Relevance for India
Finally, what’s the relevance of the product for the Indian market?

Sethi added: “Mobile and NFC based application are gaining its popularity in India. M24SR is an easy-to-use and an affordable product for the Implementation of NFC-based applications in transportation, entertainment, and lifestyle areas.

As for the go-to-market strategy, the M24SR mass market launch is planned for end of February 2014. Some M24SR samples have been delivered to key customers during Q4 2013 and design/development is ongoing.

Global semiconductor market will be $313 billion in 2012: SSIA

November 17, 2011 27 comments

A view of SSIA's Summit.

A view of Singapore Semiconductor Industry Association's Summit.

The Singapore Semiconductor Industry Association (SSIA) recently held its 2011 Summit. Estimating the global semiconductor industry in 2012, the SSIA agrees with Future Horizon forecasts stating that 2011-Q3 will be flat (+/- 1 percent), and that 2011-Q4 will show a slight decline (-1/-2 percent) with total year growth of 1 percent as compared with growth of 2010 +32 percent.

Pasquale Pistorio, honorary chairman, ST Microelectronics, who spoke at SSIA’s Summit, described expectations for 2012 as including a low first half, followed growth of +8 percent and 2013 growth of 22 percent. “The industry will reach the elusive $400 billion mark in 2013,” noted Pistorio. The global semiconductor market will be $313 billion in 2012.

Meeting semicon industry challenges
According to the SSIA, the semiconductor industry challenges going forward include:
* Industry growth in an uncertain market: The semiconductor industry is cyclical – and this poses challenges. “Excessive investment in inventory during expansion or economic slowdown, or both, has been the way of life in this industry,” said Pistorio. “The semiconductor industry is characterized by big market swings.  In 2001, the swing was +69 percent. Now is a new swing. This is the first correction of this decade. This is the nature of the industry – this is business as usual.”

* Growth of emerging semiconductor companies: With semiconductor startups declining in number and VCs becoming more and more hesitant to invest funds in getting them off the ground, a different approach is needed to enable these innovative entrepreneurs to gain a foothold in the semiconductor market.

To encourage growth in this sector, SSIA will become involved in a semiconductor-focused company incubator to guide the creation of growth of Singapore- based fabless semiconductor startups; create an SSIA emerging company board with a focus  on better meeting the needs of emerging semiconductor companies and facilitating coordination with established Singapore semiconductor companies; and coordinate with Singapore government agencies and the Economic Development Board on infrastructure support initiatives for emerging semiconductor companies.

Asian semiconductor industry worth $177 billion in 2012
Estimating the Asian semiconductor industry in 2012, the SSIA said that Singapore plays a significant role in the overall. The Asian semiconductor market is expected to be $177 billion in 2012. According to SSIA projections, the 2012 Singapore semiconductor market will be approximately $44.6 billion.

Year 2010 was a record year for Singapore’s electronics industry. The industry attained historic highs in both manufacturing output and value-added. Electronics manufacturing output grew 26.9 percent in 2010 to reach S$89.9 billion, far surpassing the global industry growth of 9.3 percent. The electronics industry was also the largest contributor to Singapore’s 2010 GDP from the manufacturing sector, with its share of GDP increasing to 7 percent from 5.7 percent in 2009.

The strong growth of Singapore’s electronics industry was enabled through industry transformation. Over the years, the electronics industry has transformed to manufacture higher value-added products and R&D. This is illustrated through two main sectors – semiconductors and data storage.

Singapore’s semiconductor industry posted a nominal growth of 49.8 percent, outpacing the global semiconductor industry’s 32.5 percent growth in 2010.  As a result, Singapore’s manufacturing output share of global semiconductor revenues increased from 11.2 percent in 2009 to 13.5 percent in 2010.

ST launches STM32 F4 series of MCUs

September 22, 2011 5 comments

The STM32 F4 series of MCUs.

The STM32 F4 series of MCUs.

STMicroelectronics has launched the STM32 F4 series of microcontrollers (MCUs), based on the latest ARM Cortex-M4 core. This adds to the signal-processing capabilities and faster operations to the portfolio of STM32 MCUs.

The STM32 F4 series brings the world’s highest performance Cortex-M microcontrollers at 168 MHz FCPU/210 DMIPS and 363 Coremark score.

Vinay Thapliyal, technical marketing manager-India, Microcontroller Division, Greater China and South Asia region, STMicroelectronics Marketing Pvt Ltd, said that the series extends the ST’M32 portfolio of 250+ compatible devices already in production, including the F1 series, F2 series and ultra-low-power L1 series, respectively. ST is said to have 45 percent of the market share by units.

The  STM32 F4 series of MCUs are re-inforced on five pillars:
* Real-time performance — 168MHz/210 DMIPS.
* Outstanding power efficiency.
* Superior and innovative peripherals.
* Maximum integration – 1Mbyte Flash, 192 Kbyte SRAM.
* Extensive tools and hardware — CMSIS DSP library, Matlab support, various IDE starter kits, RTOS and stacks.

A Coremark study says that STM32 F4 gives the best acceleration and highest speed. Thapliyal added, “We are ready for the market.” It takes ART to be #1 in performance: It is a combination of core, embedded Flash design, process, acceleration techniques, etc.

ST’s ART Accelerator, an adaptive real-time memory unleashes the Cortex M4 core’s maximum processing performance equal to 0-wait state execution, and Flash upto 168MHz. Real-time performance is the 32-bit multi AHB bus matrix. The layers are independent of each other.

The STM32 F4 series boasts a high-performance digital signal controller. The MCU leads to the ease of use of C programming, interrupt handling and ultra-low power. The FPU facilitates single precision, ease of use, better code efficiency, faster time to market, eliminates scaling and saturation, and easier support for meta-language tools. The DSP is based on Harvard architecture, single-cycle MAC and barrel shifter.

It also boasts of an outstanding power efficiency.  The 230 μA/MHz, 38.6 mA at 168 MHz executing Coremark benchmark from Flash memory (with peripherals off), has been made possible with:
* ST’s 90nm process allowing the CPU core to run at only 1.2 V.
* ART Accelerator reducing the number of accesses to Flash.
* Voltage scaling to optimize performance/power consumption.
* VDD min down to 1.7 V.
* Low-power modes with backup SRAM and RTC support.

The low power in real-life applications is not just low-power mode. There is also a need to consider the percentage of time spend in low-power (LP) mode and in Run mode. If competitors are claiming better low-power modes, these are only an advantage if the overall system is spending more than 90 percent of the time doing nothing in low-power mode.

Superior and innovative peripherals includes, among others, two USB OTGs, two full duplexes PWMs at 168MHz, ADC at 2.4MSPS.

As for maximum integration, the 1-Mbyte Flash and 192-Kbyte SRAM memories available in the product accommodate advanced software stacks and user data, with no need for external memories. The 4-Kbyte SRAM battery back-up is used to save the application state and calibration data (SRAM block used as an EEPROM). In addition, the 528 bytes of OTP memory make it possible to store critical user data, such as the Ethernet MAC addresses or cryptographic keys. Read more…

Trends in embedded — smart and green energy: ST


Vivek Sharma, STMicroelectronics.

Vivek Sharma, STMicroelectronics.

It is a such a pleasure interacting with Vivek Sharma, VP, Greater China & South Asia-India Operations, and director, India Design Centers, STMicroelectronics. While presenting the latest trends in embedded technologies, he hoped that there could eventually be a fab in India, by 2015. Speaking about ‘More Moore’ and ‘More than Moore’, he talked about 3D heterogeneous integration and smart sensors – that provide new, high-growth opportunities. Sharma largely touched upon smart and green energy.

India’s opportunities to leapfrog are immense, especially with a median age of 25.9 years. As for the Indian consumption context, India’s share is ~3 percent worldwide consumption levels 2009/2010. It is said to be $45 billion or ~3 percent in electronics and $6.7 billion or ~2.5 percent in semiconductor consumption.

Taking a look at leveraging of electronics by nations, (as per 2005 data) Taiwan leads with 15.5 percent of GDP, followed by South Korea at 15.1 percent, China at 12.7 percent, Thailand at 12.4 percent, Germany at 8.3 percent, USA at 5.4 percent, Japan at 4.5 percent, and India at 1.7 percent, respectively.

“More than Moore” diversification has been taking place, especially, by combining SoC and SIP to produce higher value systems.

3D heterogeneous integration has been taking place by integrating multiple functions via 3D/TSV. This involves the vertical stacking and connection of various materials, technologies and functional components together:
* Bio, MEMS and other sensors.
* Digital processing (MCUs, MPUs).
* RF transceivers for data transmission.
* Micro-battery (i.e., thin film).
* Other analog ICs and mixed technologies.

Advantages include integrated multi-functionality, more interconnections, reduced power consumption, smaller packaging, increased yield and reliability, and reduced overall costs.

Smart system integration is another trend, which enables combining “More than Moore” and “More Moore” technologies in a single smart system — from multi-package on board to multi-chip on package.

ST intros STM32L ultra-low-power Cortex‑M3 devices

March 3, 2011 Comments off

STM32L ultra-low-power Cortex‑M3 devices.

STM32L ultra-low-power Cortex‑M3 devices.

STMicroelectronics has introduced the STM32L advanced ultra-low-power Cortex-M3 based MCU platform.

Built on cutting-edge proprietary process – robustness, it is part of a wide 32-bit product portfolio. The MCU platform is based on the just-enough energy concept and has an all inclusive package applications.

STM32L 32- to 128-Kbyte products are entering full production in the second half of March 2011. It is part of the industry’s largest ARM Cortex-M 32-bit microcontroller family with six STM32 families. STMicroelectronics is developing the STM32L portfolio up to 384 Kbytes of embedded memory. The STM32L is also Continua ready for its USB peripheral driver.

STM32L’s robustness has been derived from an automotive qualified process. It is all inclusive for ultra-low-power applications, and comes with hardware integrated features and software library packages. STM32L also has a ‘just-enough energy concept’, which includes undervolting, user controlled and an innovative architecture, all of this for less than 1 µA.

ST’s ultra-low-power EnergyLite platform features ST’s 130nm ultra-low-leakage process technology. It makes use of shared technology, architecture and peripherals. The company’s ultra-low-power portfolio for 2011 will be in production second half of March 2011. Many others will also be in production in the second half of April 2011. In fact, there will be over 100 part numbers from 4- to 384-Kbyte flash, and from 20 to 144 pins.

STM32L is based on ultra-low-power architecture, which is all inclusive for ultra low power applications. It also features ultra-low voltage, with power supply down to 1.8 V with BOR and also down to 1.65 V without BOR.The analog functional can be down to 1.8 V and the reprogramming capability can be down to 1.65 V.

STM32L is also flexible and secure, featuring +/- 0.5 percent internal clock accuracy when trimmed by RTC oscillator. It has up to five clock sources and has the MSI to achieve very low power consumption at seven low frequencies.

It also feattures dynamic voltage scaling in Run mode. The voltage scaling optimizes the product efficiency. User selects a mode (voltage scaling) according to external VDD supply, DMIPS performance required and maximum power consumption. It features the energy saving mode as well, down to 171 µA/DMIPS from Flash in Run mode. Read more…

ST focuses on four key growth areas

February 11, 2011 Comments off

Carlo Bozotti, president and CEO, STMicroelectronics.

Carlo Bozotti, president and CEO, STMicroelectronics.

According to Carlo Bozotti, president and CEO of STMicroelectronics, there are four key growth areas for the company:
* Smart meters and energy saving.
* Smart consumer devices.
* Trust and data security.
* Healthcare and well being.

Bozotti was speaking at the STMicroelectronics’ media roundtable held this evening at the Greater Noida, India office.

Year 2010 goes down in ST’s history as a year of records. Both ACCI and IMS surpassed the $1 billion mark in quarterly revenue. Year 2010 was also a year of recovery — with ST achieving $1,3 billion revenue and a net operational cashflow of $961 million. ST also improved its net financial position to $1.7 billion.

In 2011, ST promises to expand and continue to grow its customer base. This year, ST predicts that the global semicon industry will grow 5-8 percent.

ST forsees its second major block of growth in manufacturing. It has aggressive ramp-up planned in application areas, such as:
* MEMS.
* Smart power automotive field.
* New platforms and solutions in smartphones and tablets.

Even ST-Ericsson, which was in restructuring mode, is now secure. This year, said Bozotti, it will be a year of transition from old, legacy products to new.

The last priority is to achieve 3D SoCs, complex MCUs and twin MEMS. Bozotti noted that the company plans to combine accelerometer and gyroscope in a single application. It will also add innovative solutions to smartphones and tablets.

As for R&D, Bozotti claimed that the company will remain committed. “We strongly commit to R&D in both good and bad times,” he noted. Read more…

Reshaping the embedded world: Vivek Sharma, ST


Vivek Sharma, regional VP, Greater China & South Asia region -- India Operations and Director, India Design Center, STMicroelectronics.

Vivek Sharma, regional VP, Greater China & South Asia region -- India Operations and Director, India Design Center, STMicroelectronics.

It was a pleasure to catch up with Vivek Sharma, regional VP, Greater China & South Asia region — India Operations and Director, India Design Center, STMicroelectronics, on the sidelines of the 4th Embedded Systems Conference (ESC) 2010 in Bangalore. We had a wonderful discussion on the trends that are reshaping today’s embedded world.

Sharma said: “Moore’s Law has governed many new things. In fact, it has ruled the roost. The industry has been able to push up complexity within a chip and also bring down costs.” As an example, during the last two decades, cost and complexity have combined to create the mobile device — which has turned out to be a disruptive application. The world recently added its 5 billionth mobile subscriber in July 2010. There is likely to be a whopping 50 billion connected devices by 2020!

SiP reshaping embedded world

Touching upon ‘more than Moore”, Sharma added that shrinking will keep on happening. System-in-package is a reality today and is reshaping the embedded world. It can allow more shrinking in size and push down costs.

Borrowing from wikipedia, for those interested, a system-in-a-package or system in package (SiP), also known as a chip stack MCM, is a number of ICs enclosed in a single package or module, and performs all or most of the functions of an electronic system.

3D heterogenous integration and  TSV

3D heterogenous integration and  through-silicon via (TSV) is another trend reshaping the industry. 3D packaging with 3D TSV interconnects provides another path toward “More than Moore”, with relatively smaller capital investments.
3D-ICs stack multiple chips together and interconnect them using through-silicon via (TSV) structures, thereby providing much more functions in a smaller footprint.

MEMS key segment
MEMS is yet another sector which is reshaping the industry. Sensors play a major role in our lives. “If we can develop good sensors, they can change our lives,” said Sharma.

“Accelerometers and gyroscopes are two key segments with substantial growth. MEMS takes advantage of the electrical and mechanical properties of the silicon.’ Sharma added that all MEMS gyroscopes take advantage of Coriolis effect. In 2009, ST introduced over 30 multi-axis gyroscopes.

For the statistically inclined, earlier this year, Dr. Robert Castellano of the Information Network said in their report 3-D TSV: Insight On Critical Issues And Market Analysis, that while the overall equipment market will grow at a CAGR of nearly 60 percent between 2008-2013, the metrology/inspection sector is expected to grow nearly 80 percent. On the device side, TSVs for MEMS is expected to grow nearly 100 percent in this time frame. Read more…

ST intros STM32L EnergyLite ultra-low-power MCUs for portable and very low power apps

May 3, 2010 Comments off

STMicroelectronics' STM32L EnergyLite ultra-low-power MCUs.

STMicroelectronics' STM32L EnergyLite ultra-low-power MCUs.

STMicroelectronics recently launched the STM32L EnergyLite ultra-low-power MCUs. I caught up with Vinay Thapiyal, technical marketing manager, MCU’s, ST India, to learn more.

The highlights of this series of MCUs include a commitment for ultra-low power — the EnergyLite platform is common for 8-bit (STM8L) and 32-bit (STM32L) MCUs. Also, it is strong on pure energy efficiency, with high performance combined with ultra low power, i.e., high high energy saving.  Finally, the ultra low power member in STM32 portfolio enriches both the STM32 ultra-low-power EnergyLite platform and the STM32 portfolio.

According to Thapliyal, STMicroelectronics has been involved in the MCU market for a long time. Off late, it has started focusing on the STM32 — the ARM Cortex based MCU and the STM8 — for 8-bit family. “We have started converging our old families into these two domains,” he added.

The STM32F is the foundation of the STM32 family. STM32F is a family of low power MCUs based on the 32-bit ARM Cortex M3 architecture.

The STM8 is a family of MCUs based on ST’s propritetary atchitecture. The STM32L is STMicroelectronics’ ultra low power family mainly used for portable and very low power applications.

The ultra-low-power EnergyLite platform, featuring the STM32L and the STM8L is based on STMicroelectronics’ 130 nm ultra-low-leakage process technology. They share common technology, architecture and peripherals. The STM8, which was launched in 2009, has caught on very fast. It is a high performance, low cost MCU.

He added that STMicroelectronics started with 130nm technology, and low pin count and low flash on STM8, while higher memory and high pin count is available on the STM32. Read more…

ST/Freescale intro 32-bit MCUs for safety critical applications

October 15, 2009 Comments off

Early this month, STMicroelectronics and Freescale Semiconductor introduced a new dual-core microcontroller (MCU) family aimed at functional safety applications for car electronics.

These 32-bit devices help engineers address the challenge of applying sophisticated safety concepts to comply with current and future safety standards. The dual-core MCU family also includes features that help engineers focus on application design and simplify the challenges of safety concept development and certification.

Based on the industry-leading 32-bit Power Architecture technology, the dual-core MCU family, part-numbered SPC56EL at ST and MPC564xL at Freescale, is ideal for a wide range of automotive safety applications including electric power steering for improved vehicle efficiency, active suspension for improved dynamics and ride performance, anti-lock braking systems and radar for adaptive cruise control.

Freescale/STMicroelectronics JDP
The Freescale/STMicroelectronics joint development program (JDP) is headquartered in Munich, Germany, and jointly managed by ST and Freescale.

The JDP is accelerating innovation and development of products for the automotive market. The JDP is developing 32-bit Power Architecture MCUs manufactured on 90nm technology for an array of automotive applications: a) powertrain, b) body, c) chassis and safety, and d) instrument cluster.

STMicroelectronics’ SK Yue, said: “We are developing 32-bit MCUs based on 90nm Power Architecture technology. One unique feature — it allows customer to use dual core or single core operation. The objective of this MCU is to help customers simplify design and to also reduce the overall system cost.

On the JDP, he added: “We will have more products coming out over a period of time. This JDP is targeted toward automotive products.”

Commenting on the automotive market today, he said that from June onward, the industry has been witnessing a gradual sign of recovery coming in the automotive market.

1 MB safety and chassis controller -- 32-bit MCU courtesy Freescale/STMicroelectronics joint development program (JDP)

1 MB safety and chassis controller -- 32-bit MCU courtesy Freescale/STMicroelectronics joint development program (JDP)

Automotive market challenges

There has been an increasing integration and system complexity. These include:

* Increasing electrification of the vehicle (replacing traditional mechanical systems).

* Mounting costs pressure leading to integration of more functionality in a single ECU.

* Subsequent increase in use of high-performance sensor systems has driven increased MCU performance needs.

There are also increasing safety expectations. Automotive system manufacturers need to guarantee the IEC61508 (SIL3) and ISO26262 (ASILD) system-safety capability. Also, a move from passive to active safety is increasing the number of safety functions distributed in many ECUs.

Finally, there is a continued demand for quality — in form of zero defects, by which, a 10x quality improvement is expected.

MCU family addresses market challenges

The MCU family offers exceptional integration and performance. These include: high-end 32-bit dual-issue Power Architecture cores, combined with comprehensive peripheral set in 90nm non-volatile-memory technology. It also provides a cost effective solution by reducing board size, chip count and logistics/support costs.

It also solves functional safety. The Functional Safety architecture has been specifically designed to support IEC61508 (SIL3) and ISO26262 (ASILD) safety standards. The architecture provides redundancy checking of all computational elements to help endure the operation of safety related tasks. The unique, dual mode of operation allows customers to choose how best to address their safety requirements without compromising on performance.

The MCU also offers best-in-class quality. It is design for quality, aiming for zero defects. The test and manufacture have been aligned to lifetime warranty needs.

The MCU family addresses the challenges of applying sophisticated safety concepts to meet future safety standards. Yue added, “There are two safety standards — we are following those guidelines.” These are the IEC61508 (SIL3) and ISO26262 (ASILD) system-safety capabilities.

The automotive industry is also targeting for zero defects. “Therefore, all suppliers in tier 1 and 2 need to come up with stringent manuyfaturing and testing process that ensures zero defects,” he said.

32-bit dual-issue, dual-core MCU family

Finally, why dual core? Yue said that the MCU helps customers to achieve to achieve safety and motor control. Hence, dual core will definitely help deliver results.

“In many automotive applications, especially in safety-related applications, we want to have redundancy for safety. In the lock-step mode, two cores run the same task simultaneously, and results are then compared to each other in every computation. If the results are not matched, it indicates that there are some problems.”

This MCU family definitely simplifies design. It uses a flexible, configurable architecture that addresses both lock-step and dual parallel operation modes on a single dual-core chip. Next, it complies with safety standards.

A redundant architecture provides a compelling solution for real-time applications that require compliance with the IEC61508 SIL3 and ISO26262 ASIL-D safety standards. It also lowers the systems cost.

Dual-core architecture reduces the need for component duplication at the system level, and lowers overall system costs.

MCUs are now shaping the embedded world!

March 20, 2009 Comments off

As promised, here’s a discussion I had with STMicroelectronics (ST) on its new 8-bit microcontroller, the STM8S — the STM8S105 and STM8S207 MCUs for industrial and consumer applications. The discussion focused on how MCUs are now beginning to shape the embedded world.

Addressing this specific query, Patrice Hamard,8-bit Product Line Marketing Manager, STMicroelectronics, said that ST is reshaping the microcontroller with a solid offer on 8bit that has a strong overlap with STM32 in terms of feature and price. “Therefore, we are going to cover the need for embedded functions with only two architectures. Compared to the previous segmentations (8-, 16- and 32-bit), we are changing it to become 8- and 32-bit only,” he clarified.

On the STM8S, Hamard said that the key application areas addressed by the MCU are industrial and appliances in consistent with the robustness and the reliability. He said: “The STM8S family is supporting 5V as well as 3V, thereby making it ideal for the platform evolution as well as a good offer for the consumer and mass market. The cost advantage given with the fine lithography also allows us to propose this family to key customers in PC peripherals and consumer applications.”

Rich feature set an imperative in MCUs
Rich feature set is an imperative in the MCU market. How is the STM8S meeting this requirement?

According to him, the feature set is driven by the need to reduce the bill of materials (BoM). The robustness allows simple design and board layout with less filtering. The clock controller gives low noise emission figure, thereby reducing the need for shielding. The precise clock allows the suppression of the external resonator. The embedded true E²Data suppresses the need for additional E²PROM. Safe reset (no grey area) makes the reset system safer suppressing the need for external reset circuit.

The clock system, as well as the two independent watchdogs will contribute to pass safety regulations together with ST’s class B libraries. All communications peripherals are available as well — (U(S)ART, I²C, SPI, CAN, LIN), advanced 16-bit timers and timebase, fast and precise 10-bit ADC.

Finally, the 8-bit core is one of the most efficient with 20MIPS at 24MHz. Built around the 8-bit data path, the micro has 16bit registers and 32bit memory memory width.

So, how does the STM8 deliver high performance with excellent code compactness?

Hamard said that thanks to the new CISC instruction set designed in collaboration with ST’s C compiler partners, the compactness has been significantly improved. The Harvard architecture with its three-stage pipeline allows to reach up to 20MIPs @ 24MHz.

ST is offering family demonstration boards and instrument cluster reference designs as well. In fact, there are currently solutions available in ST with the STM8S/128-EVAL, as well as with third parties like raisonance with the REVA KIT. Many reference designs are complete or in progress demonstrating motor control (sensorless brushless DC motors), power management, smart card protocol, capacitive sensing, etc.

Demand for low-power MCUs
According to Hamard, the trend of low power is coming from the increase of the application base on battery in consumer and personal care, combined with a strong demand for power meters (electricity, water and gas). Energy saving is important and electronics can contribute a great deal to reduce the overall energy consumption.

“The STM8S is not specifically aiming low power applications even though the features of the family are good for many low power devices. It is in our plan to introduce later this year a dedicated family to address low voltage/low power arena,” he added.

Why 8-bit?
Considering that there are 8- vs. 16- vs. 32- bit MCUs, and also that affordable prices are perhaps the reason that the Asian region is witnessing a migration to 16-bit architectures. In this scenario, why 8-bit?

Hamard said: “Everything depends on what we consider to be “affordable” and who we are talking to. For large quantity and simple functions, affordability is between $0.20 cents to $0.50 cents. By construction, a 16-bit device cannot be as effective as an 8-bit product. We even believe that the microcontroller prices will decrease and address applications served with few discrete devices. The main reason is the consistency of architecture.

“The construction of the 32- and 16- are very similar, especially with the new generation of ARM-based products. The only reason to go from 8- to 16-bit is for performance improvement. We say that our 32-bit portfolio is already overlapping the 8-bit segment in performance and in price, leaving no room for the third core structure.

“Taking a closer look at our portfolio, you will realize that our 32-bit is also providing 16-bit instruction set, and our 8-bit is built with 16-bit register, 24-bit memory address bus, etc.”

%d bloggers like this: