Archive

Posts Tagged ‘components’

Components Direct offers guaranteed traceable E&O inventory!


Components Direct is a leading source for authorized end-of-life and excess electronic components. The products are guaranteed grade A factory sealed direct from the manufacturer and inventoried in a ESD 20.20 certified and ISO 9001 certified state-of-the art-facility. Components Direct is headquartered in Milpitas, CA with locations in the US and Asia.

It has a leading cloud-based platform for excess and obsolete (E&O) inventory. In 2012, Avnet and Components Direct entered in a strategic relationship. Components Direct is the exclusive channel for Avnet’s factory authorized excess and end-of-life components.

Compared to leading industry giants, such as Element14 and RS Components, Components Direct, currently, doesn’t have a detailed menu showcasing listed products, at least not on the home page, as yet. One hopes that’ll make an appearance soon.

Speaking on the mission of Components Direct, Anne Ting, executive VP, Marketing said: “Components Direct is the premier authorized distributor for excess and end-of-life electronic components. We are the only company working directly with manufacturers and their franchised distributors to offer 100 percent guaranteed traceable E&O components as well as technology services to combat counterfeit components and other gray market activity.

“For our supplier partners, we enable them to put excess product back into the control of an authorized source, as opposed to the gray market. For buyers, we provide them with a secure, authorized one-stop shop for excess, obsolete and unsold factory components.”

Combating gray market
How important is it to combat the gray market? Why will this endeavor stop/lessen gray market activity?

According to Ting, the gray market is a serious and growing problem. As early as 2008, a study by KPMG and the Alliance for Gray Market and Counterfeit Abatement (AGMA) stated that as much as $58 billion of technology products were passing through the gray market, and the problem has only gotten worse.

The gray market is rampant throughout all industries, with everyone from engineers, to procurement professionals and consumers impacted negatively when the products they purchase are advertised as new and authentic, but in reality could be used, refurbished or even worse, counterfeit.

In fact, a 2012 study by market research firm IHS found that over 12 million counterfeit electronics and semiconductor components

Anne Ting

Anne Ting

have entered the distribution chain since 2007, with 57 percent of all counterfeit parts obsolete or end-of-life components. Many of these parts make their way into mission-critical industries, such as defense and aerospace, where a malfunctioning counterfeit part can mean the difference between life and death.

While provisions in the 2012 National Defense Authorization Act have enabled the government and trade groups to make some progress towards regulating the supply chain to ensure that components are only sourced directly from the manufacturers or their franchised distributors, the problem has not abated. The Act empowers the federal government to hold contractors financially responsible for replacing counterfeit products.

This, together with other changes, puts more responsibility on suppliers of electronic component to have risk mitigation procedures in place. The issue is become more topical and the industry must act in order to comply with the new legislation.

Components Direct takes this problem seriously, and provides supplier insights and tools to help combat gray market activity. In a recent study we conducted for a leading semiconductor supplier of both analog and digital devices, we discovered that over 124 million units of their product were floating in the gray market across 6,500 plus part numbers.

Over 70 percent of the products were found in Asia, and 20 percent also appeared in both North America and EMEA. The product age spanned many years with date codes of less than one year accounting for 22 percent of their gray market product. A further 5 percent had date codes over 11 years, demonstrating that whether you were an OEM looking for the newest product, or a military sub-contractor looking for obsolete components, no end customer is immune to the presence of unauthorized product.

Components Direct’s technology tools and services track gray market activity and provide suppliers with unprecedented visibility to their product leakage in the gray market by part number, region, data code etc. This data enables our suppliers to trace leakage in their supply chain and lessen potential unauthorized product from getting into the gray market.

Additionally, Components Direct provides suppliers and buyers with a secure, factory authorized channel for selling or purchasing 100 percent guaranteed traceable components. “We only sell products that come directly with manufacturers or their franchised distributors and all our products are inventoried in an ESD 20.20 and ISO 9001 certified facility,” said Ting.As an extension of the manufacturer, Components Direct provides the supply chain buyer with complete confidence and peace of mind that all products originate directly from the manufacturer and have been properly stored, handled and packaged. Sourcing from an authorized source like Components Direct eliminates the risks surrounding product quality, reliability and liability. Read more…

PC’s Electronic Components Blog named top resource for electrical engineers! ;)

February 14, 2013 9 comments

Today, Feb. 14th, has turned out to be a great day for me! I received an email early morning, which stated: PC’s Electronic Components Blog is featured on the list of 100 Top Resources for Electrical Engineers that we published on ElectricalEngineeringSchools.org, USA!

Wow! This happens to be my sixth world title in a row!! The picture of the award badge is given alongside!!!

I am so very happy that my blog on electronic components has bagged an award! I had started my career writing about electronic components for Asian Sources Media, now Global Sources‌, in Hong Kong.

Back in those days – 1994-1995, there used to be some presence of electronic components made by local manufacturers, especially in Naraina Industrial Area, New Delhi. I still remember, very clearly, doing the rounds of Naraina, along with my friend, Dolly! Back then, most of the components were made for colour TV sets, and a few makers had just started making components for cellular phones.

Today, there are big-sized, very large representatives of electronic components in India.

I recall one of my earlier stories was on DIP switches. There used to be slide and rocker types of DIP switches. I wonder whether they are still used today! Maybe, they are, in some electronic devices! I also recall there used to be some demand for TV antennae at that time, as well as for cell phone antennae! How time has flown by since!!

May I take this opportunity and offer sincere thanks to all of my readers, well wishers, friends and acquaintances I have made over the years for their continuous love and support! Without you, no award is ever possible! 😉

I’d like to conclude by taking the names of two gentlemen, who have spurred me on to write blogs on components, electronics and semiconductors, as well as telecom. They happen to be Alfred Cheng. country manager, Hong Kong, Global Sources, and Spenser Au, former publisher, CTG and now, CEO, Global Sources, Hong Kong, who made me work on the Telecom specs tables.

A word is also due for Raj Gopinath, my editor-in-chief at Asian Sources, and Daniel Tam, who replaced Spenser, back in 1999, as publisher of CTG. Special mention needs to be made of Claudius Chan, who I consider as a ‘guru’ of electronic components. Whatever I am today is largely due to my time spent at Global Sources! Thanks a lot, my dear friends!!

Alfred just sent me a mail saying: Hi Pradeep, How many more prizes would you like to win, my friend? I wish I could write as good as, maybe 50 percent as good as you do since we used to work together in the electronics industry. 🙂 Thanks a lot, my friend!

Applications of multilayer chip capacitors

February 12, 2013 2 comments

I had the pleasure of interacting many times with Norman CM Lui, CEO, Skymos back in 2006. Established 1983, Skymos Electronics Ltd is one of the foremost designers and manufacturers of chip components, specializing in multilayer chip inductors, ferrite chip beads, multilayer chip ceramic capacitors, chip resistors and resistor networks. It has been awarded ISO 9001 and 9002 approval.

It was among the few suppliers offering multilayer chip inductors, ferrite chip beads, chip resistors, low-temperature co-fired ceramic capacitors (LTCC), etc.

LTCCBack then, he spoke of the applications of MLCCs that were generally in Bluetooth, GPS, cable TV equipment, satellite, etc. For example, taxis plying with GPS would need high Q (quality) MLCCs. New applications include converged handsets, MP4 players, PS3, digital cameras and video cameras; flat-panel high-definition TVs; dual-core multiprocessors (for motherboards, notebooks, desktop PCs and scanners); and automotive electronics.

Lui said most suppliers were more concerned about the 3H – high capacitance, high voltage and high frequency – for MLCCs, as well as high Q (quality factor). The frequency of MLCCs had become much higher as the termination is done on the top, instead of the sides.

Various types of dielectric were being used for MLCCs – such as the BaTiO3, NP0/C0G, XSR/X7R and Y5V/Z5U, respectively. The X5R allowed more capacitance for MLCCs and dielectric constant (K) was higher. The NP0/C0G group supported capacitance ranging from 1pF to 1µF and up to 10nF.

As for the electrodes, Pd/Ag was being used and Ni was also being used currently. For Pd/Ag electrode, the termination was in Ag/Ni/Sn. For Ni electrode, termination was mainly in Cu/Ni/Sn. Skymos is currently focusing on the Pd/Ag electrodes for MLCCs.

One major development was the use of BME (base metal electrode). Lui said that moving from the current electrode to BME would require lot of investment of about $50 million. For using BME, suppliers would need to install all new equipment, especially for the furnace, which would be used to oxidize the Ni element.

Another development has been the improvement in capacitance. Using BME for 0402, suppliers can produce MLCCs with high capacitance, such as 2.2µF, 3.3µF/6.3V, etc. Earlier, capacitance was 0.47µF using Pd/Ag electrode. The BME could enable higher capacitance due to an increase in the number of active layers.

For instance, the dielectric was 8-10 microns when using Pd/Ag electrodes. Using BME, the dielectric became 2-3 microns. The corresponding values for 0603 type is 10µF/6.3V using BME, 47µF for 0805, and 220µF for 1206. MLCCs have replaced those applications that previously required tantalum capacitors.

Another development has been the advent of the MLCC array, which has more applications in the PC industry. This array can reduce the EMI. Skymos is offering this MLCC array. It also improves the high Q, voltage and capacitance.

On the issue of MLCCs vs. ultracapacitors, Lui said, suppliers could already reach up to 220µF capacitance via MLCC, which were replacing tantalum capacitors. The tantalum capacitors were now being used for applications requiring 220µF-330µF capacitance. As a result, all other types of capacitors were dropping in demand, as compared to MLCCs. Ultracapacitors were intended to replace the Ni battery. However, there has also been a shift to oxide batteries.

The supplier’s R&D strategy includes focusing on 3H and possibly, BME. It also reduced the insulation loss and noise by grounding. The MLCC combined a capacitor and a filter. I hope Skymos has produced 20KV MLCCs. It was already offering 10KV MLCCs.

Most of this data actually appeared in Global Sources Electronics Components magazine in 2006!

%d bloggers like this: