Posts Tagged ‘nanotech’

Why solar/PV is good for India? An ISA perspective!

December 25, 2008 1 comment

Recently, the India Semiconductor Association (ISA) held an educative briefing session on the potential of the solar PV market in India, which was conducted by Rajiv Jain, Director, Government Relations, ISA.

This meeting was held well before iSuppli issued a warning that there could be global solar sunburn in 2009! I am sincerely hoping that most of the points mentioned by ISA’s Jain still hold good in the coming year, and that India really does well and takes off in solar photovoltaics.

The ISA’s vision: To help make India an attractive global destination for PV manufacturing and a world leader in solar energy.

Starting with the basics of photovoltaics, he said that it is a package of solar cells used to convert energy from sun to electricity. In simpler words, photons from sunlight knock electrons into higher state of energy, thus creating electricity. The electricity can be used to power equipment or recharge a battery. A typical PV system mainly consists of a PV module, battery, inverter, controller and junction box.

Focusing on the technological landscape, he touched upon the two key technologies for solar: crystalline and thin film.

Crystalline silicon is said to be the most mature Si wafer technology, with the largest market share. Though, high on cost, it has a typical efficieny of 14-18 percent. Crystalline silicon is said to suitable for rooftop applications.

Thin film is nothing but thin layers of photosensitive materials on glass. It is currently on high growth due to silicon shortage, and very low on cost due to low material consumption. The efficiency is about 6.5-8 percent.

A third technology, nanotechnology, is the future technology for cost reduction. It is more in the R&D space as of now.

Present scenario for solar
So what’s the present scenario? In 2007, of $71 billion invested in new renewable energy (RE) capacity globally, 30 percent was in solar PV. It is the fastest growing area in the energy sector, with a CAGR of 47 percent over the last five years.

Grid-connected solar PV has been high growth market segment in 2007 (50 percent increase). Also, 86 percent of the PV installations are largely in four countries, with Germany at 47 percent being the outright leader.

Market drivers are said to be attractive feed-in tariffs, national PV market development and acceptance, RE obligations through solar PV, access to cheaper mode of finance, manufacturing incentives as well as strong R&D.

Why solar for India
I have addressed this in an earlier blog post. Here’s what Jain had to say, and it is mostly in line with the earlier discussions.

First, India has among the highest solar irradiance globally. It also has the best quality reserves of silica in Orissa and Andhra Pradesh. India has also established itself low cost producer and assembler of solar PV cells and modules.

The major challenges include attaining scale and integration for cost reduction, and, R&D for development of the industry.

Solar insolation in India
To start with, the daily average solar energy incident varies from 4-7kWh per m2. Next, we have multiple sites with solar irradiation >2000 hours per year. In contrast, Germany has 900-1,200 hours per year. Further, most parts of India have 300-300 sunny days in a year translating into a potential of 600GW. Also, potential in some states like Rajasthan is 35-40 MW per m2.

It is well known that the Indian semiconductor policy of 2007 has triggered off the now well publicized efforts in solar initiatives. The government of India has received 16 applications with investments envisaged at app Rs. 1,55,000 crores.

The investments in solar PV manufacturing exceed Rs 1,25,000 crores. Generation based incentives (GBI) are going to be key.

Potential market segments in India
There are quite a few, actually. In rural electrification, the government of India’s target is to achieve ‘Electricity for all by 2012’. About 18,000 remote villages will likely be electrified through RE. About ~25 percent of the remote villages, i.e., 4,500 villages, form a very viable market.

Next comes telecom back-up power! PV is a cost effective alternative to diesel generators (DG) for back up power for shorter duration, as DG based systems suffer from several disadvantages.

Another key market could be grid connected solar PV based generation. Current tariffs do not provide attractive IRR to developers. Decreasing system prices are however, likely to improve the economics.

Finally, roof based BIPV is said to be an alternative to reduce the cost of power procured by commercial buildings.

ISA’s recommendations
The ISA has also made salient recommendations via its report on the industry. These include areas such as manufacturing: with an aim to encourage companies investing in ‘Scale and integration’, provision of capital subsidy to larger number of units, availability of funds at a cheaper rate, and an emphasis on R&D.

Also, the ISA has recommended that GBI be given for a tenure of 20 years, with the present period being 10 years. Further, it has suggested an accelerated depreciation along with the GBI scheme, and the availability of GBI for an unlimited capacity for a period of five years. The ISA has recommended an enactment of the RE Law requiring utilities to progressively increase power purchase from RE.

On its part, the ISA has been working with the government of India and various state governments as well. It has a sound rapport with concerned ministries – MNRE, DIT and NMCC.

The ISA has also assisted in the technical evaluation of solar PV proposals received in Fab City, Hyderabad. It has also drafted a semiconductor policy for the government of Karnataka, which should be out early next year, hopefully. The ISA is also working with several other state governments to promote the industry in their states.

The second ISA Solar PV Conclave is scheduled for November 2009 at Hyderabad.

Very good intentions, all of these! Now, for the Indian industry and the government to deliver, and walk hand in hand!!

India fab story not disappearing: SemIndia

June 24, 2008 Comments off

According to B.V. Naidu, managing director, SemIndia Systems, and Vice Chairman – India Semiconductor Association (ISA), the Indian fab story is well on track. Here, he speaks about the FabCity, the status of fabs in India and SemIndia’s initiatives.

On the status of setting up of IC wafer fabs in India, he says that a couple of companies are in the process of raising the money for setting up the wafer fab in India. We still do not know the timelines for the same.

On India’s fab story is disappearing, Naidu feels that it is always difficult to raise the money for such large capital-intensive projects, which are happening first time in the country. “One of the large industrial groups also announced their plans to set-up the fab. This shows that the fab story is not disappearing,” he says.

The Andhra state government had recently sent notices to SemIndia and NanoTech over FabCity. Pertaining to the status of the project, he adds that any capital-intensive new projects of this kind will take some time. It is also quite natural that the government generally issues such notices more to put pressure so as to expedite the project implementation. It is good that the governments are closely monitoring the progress of the project implementation.

According to him, SemIndia’s ATMP project construction has started. The FabCity has already come-up and many solar PV fabs are being set-up in the FabCity. This shows that efforts of SemIndia, ISA and the government of AP have yielded the successful results to make FabCity a successful project.

The India Semiconductor Association (ISA) can only indicate that such government communications are common for wherever there is government support. The ISA will continuously put in their efforts for attracting the new investments to India and work along with the governments to make sure that their efforts are fruitful.

“SemIndia’s ATMP project construction has started and we are still looking for the investors for their fab project,” says Naidu.

So, what sort of planning is now required from the Indian semicon industry? As per the SemIndia managing director, the Indian semicon industry should continuously work with the government to make sure that the government of India’s semicon policy is successful and efforts are various state governments in attracting the new investments in this area are fruitful.

The ISA will continuously strive for creating the balanced eco-system for the semicon design industry, high-tech manufacturing and talent nurturing.

Measuring performance of carbon nanotubes as building blocks for ultra-tiny computer chips of the future

October 15, 2007 Comments off

There is this really great story from IBM Research Labs that I simply have to seed here for my readers.

IBM’s scientists have created a method to measure the performance of carbon nanotubes as building blocks for ultra-tiny computer chips of the future. Of course, you can also read it on IBM Research Lab’s site as well as on CIOL’s semicon site.

IBM scientists have measured the distribution of electrical charges in tubes of carbon that measure less than 2nm in diameter, 50,000 times thinner than a strand of human hair.

This novel technique, which relies on the interactions between electrons and phonons, provides a detailed understanding of the electrical behavior of carbon nanotubes, a material that shows promise as a building block for much smaller, faster and lower power computer chips compared to today’s conventional silicon transistors.

Phonons are the atomic vibrations that occur inside material, and can determine the material’s thermal and electrical conductivity. Electrons carry and produce the current. Both are important features of materials that can be used to carry electrical signals and perform computations.

The interaction between electrons and phonons can release heat and impede electrical flow inside computer chips. By understanding the interaction of electrons and phonons in carbon nanotubes, the researchers have developed a better way to measure their suitability as wires and semiconductors inside of future computer chips.

In order to make carbon nanotubes useful in building logic circuitry, scientists are pushing to demonstrate their high speed, high packing density and low power consumption capabilities as well as the ability to make them viable for potential mass production.

Dr. Phaedon Avouris, IBM Fellow and lead researcher for IBM’s carbon nanotube efforts, said: “The success of nanoelectronics will largely depend on the ability to prepare well characterized and reproducible nano-structures, such as carbon nanotubes. Using this technique, we are now able to see and understand the local electronic behavior of individual carbon nanotubes.”

To date, researchers have been able to build carbon nanotube transistors with superior performance, but have been challenged with reproducibility issues. Carbon nanotubes are sensitive to environmental influences.

For example, their properties can be altered by foreign substances, affecting the flow of electrical current and changing device performance. These interactions are typically local and change the density of electrons in the various devices of an integrated circuit, and even along a single nanotube.

France rising in nanotech excellence

October 9, 2007 Comments off

This was sent to me by the French Technology Press Office in New Delhi. Reproduced here for readers.

More and more companies from the USA and Japan are investing and launching partnerships in France to take advantage of its cutting-edge nanotechnology expertise. France boasts several zones dedicated to advancing nanotechnology excellence, including the SCS cluster in Sophia Antipolis, the Systematic cluster in the Paris region and notably, the global micro-nanotechnology cluster Minalogic in Grenoble.

In 2007, Minalogic will strengthen its leader status by investing €80 million into 8 new collaborative projects focused on micro and nanotechnologies for next-generation semiconductors and new manufacturing processes, and it recently welcomed Hewlett-Packard as its 50th partner. Starting in September, HP will help cluster members save valuable amounts of time and money with access to highly advanced 2-TeraFlop data processors, called Virtual Nodes.

On the research side, France’s world-class nanotech laboratory CEA-Leti and the leading Japanese lithography company Nikon announced a joint effort to examine Double Patterning and Double Exposure technology for 32 nm semiconductor devices. “Leti offers an outstanding, state-of-the-art facility with all of the processes required for Double Patterning,” says Toshikazu Umatate, Executive Officer, Precision Equipment Co., Nikon Corp. Another Japanese leader, Yamatake, is already working with Leti to develop nanotechnologies.

International companies looking to expand in nanotechnology are also choosing France for their European headquarters. The California-based analog semiconductor company Monolithic Power Systems, ranked as one of the fastest growing companies in Silicon Valley by Deloitte, has now opened its headquarters in Bernin-Crolles, and Boc Edwards, part of the Linde Group, has also moved its European semiconductor business headquarters from London to Grenoble to be closer to its electronics customers and to recruit skilled talent in the region.

France’s expertise is expected to grow on the healthcare side of nanotechnologies following the recent announcement of the opening of Clinatec, an experimental nanotechnology-based neurosurgery clinic expected to be set up in the next three years. The clinic will benefit from the work being carried out at Minatec, Europe’s largest research center in micro-nanotechnologies.

Indian government announces policy to woo investments in semicon fabs

September 16, 2007 2 comments

Better late than never, as the saying goes. The Department of Information Technology, Ministry of Communication and IT, Government of India, needs to be congratulated for coming up with the Special Incentive Package Scheme (SIPS)to encourage investments for setting up semicon fabs, and other micro and nanotechnology manufacturing industries in India!

The “ecosystem units” have been clearly defined as units, other than a fab unit, for manufacture of semiconductors, displays including LCDs, OLEDs, PDPs, any other emerging displays; storage devices; solar cells; photovoltaics; other advanced micro and nanotechnology products; and assembly and test of all the above products.

Just a week or two back, I was in conversation with some companies from Israel who were looking to develop business in India. Now, they, and others, have clear guidelines to follow. One of the companies, Nova Measuring Instruments Ltd, should feel happy that the definition of “ecosystem” includes assembly and test of products.

Nova develops, produces, and markets advanced monitoring, measurement and process control systems for the semiconductor manufacturing industry. Another well-known player, Tessolve, has been present in India since 2005 and would surely feel glad with the notification. At least, the media and others will take more notice of the company.

In Hong Kong, an ex-colleague and I used to cover OLEDs. When I first read about this technology back in the early 2000, I used to wonder whether India could have such a capability. Seems, it is now in a position to have OLEDs! I hope Lite Array (OLED) HK is watching and reading all of this.

Plasma display panels is another interesting line. The guidelines should interest LG, Matsushita, Sichuan Changhong Electric Co. Ltd, IRICO Group Corp. Panasonic, Asahi, Mitsui Chemicals, Nippon Electric, Samsung etc. Some of these firms are already present in India in one form or the other. It’s just a matter of their being keen on developing PDP in India.

LCDs could be another big investment area. Taiwan’s AU Optronics (AUO), Chi Mei Optoelectronics (CMO), Sharp, Samsung, as well as other biggies like LG, NEC, etc., need to be wooed.

It really excites me to see all the possibilities in front of India. If this goes on well, India would be in for a great ride in electronics manufacturing, and in the semicon space.

In the same context, the Bangalore Nano 2007, which will be held in December, could not be better timed. There should be a whole lot of companies looking to be present at this show!

India’s now on the threshold of major initiatives in the electronics manufacturing space. Some semicon fabs will also come up, and the number of fabless companies should likely increase. Maybe, TSMC and Tower could oblige with some foundries too. Should all of this happen at the right time, we are in for exciting times.

Bangalore Nano puts Indian firmly on world nanotechnology map

August 23, 2007 Comments off

India is now firmly on the global nanotechnology map, following the announcement of the first Bangalore Nano 2007 Convention, which will be held this December.

The nanotechnology industry is heralding a new world order. It has been estimated that the market will grow to over US $1 trillion by 2015. In the US, nanotechnology projects have attracted more than US$800 million in public funds making it the largest research project since the Apollo moon landing.

The European Union is also committed to ensuring a balanced approach in developing nanotechnology. Japan has been investing in nanoscience since the 1980s and is now behind only to the USA in terms of government investment. South Korea and China have revised and improved their national initiatives over the past year, and Australia and India have announced significant new national investments in nanoscience and nanotechnology.

The first ever such Convention, a two-day event on nanoscience and technology, will be held on December 6-7, in association with Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR). It would focus on the integrated roles of technologies, applications and market for the successful commercialization of nanotechnology. The theme of the event is: ‘Bridging the research-industry gap in Nanotechnology’.

My colleague, Radhika, has actually written about Bangalore Nano 2007, and I’m merely borrowing that page link from CIOL Semicon home page.

Bangalore Nano 2007 is the first major event of its kind in the country and is likely to host renowned global scientists and industry veterans in the field of nanotechnology.

C.N.R. Rao, honorary president, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) and the Chief Mentor of Bangalore Nano 2007, said: “Nanotechnology, which has a global business potential of nearly $1 trillion, has many valuable societal application for the unprivileged in the country, including the creation of a more efficient filtering systems for producing clean drinking water and the provision of cheap and clean energy.”

This will surely be an event worth the wait

%d bloggers like this: